Plant Biol (Stuttg) 2005; 7(2): 140-147
DOI: 10.1055/s-2005-837583
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

The Distribution of Membrane-Bound 14-3-3 Proteins in Organelle-Enriched Fractions of Germinating Lily Pollen

H. Pertl1 , R. Gehwolf1 , G. Obermeyer1
  • 1Molecular Plant Physiology, Div. Allergy and Immunology, Dept. Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
Further Information

Publication History

Received: November 19, 2004

Accepted: February 3, 2005

Publication Date:
11 April 2005 (online)


Proteins of the 14-3-3 family show a broad range of activities in plants, depending on their localisation in different cellular compartments. Different organelle membranes of pollen grains and pollen tubes of Lilium longiflorum Thunb. were separated simultaneously using optimised discontinuous sucrose density centrifugation. The obtained organelle-enriched fractions were identified as vacuolar, Golgi, endoplasmic reticulum and plasma membranes, according to their marker enzyme activities, and were assayed for membrane-bound 14-3-3 proteins by immunodetection. 14-3-3 proteins were detected in the cytoplasm as well as in all obtained organelle fractions but were also released into the extracellular medium. In pollen grains, much more plasma membrane-bound 14-3-3 proteins were detected than in the PM-enriched fraction of pollen tubes, whereas the level of Golgi- and ER-associated 14-3-3 proteins was similar in pollen grains and tubes. This shift in the localisation of membrane-associated 14-3-3 proteins is probably correlated with a change in the major function of 14-3-3 proteins, e.g., perhaps changing from initiating pollen grain germination by activation of the PM H+-ATPase to recruitment of membrane proteins via the secretory pathway during tube elongation.


  • 1 Aitken A.. Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants.  Plant Molecular Biology. (2002);  50 993-1010
  • 2 Ames B. N.. Assays of inorganic phosphate, total phosphate and phosphatases.  Methods in Enzymology. (1962);  8 115-118
  • 3 Barkla B. J., Vera-Estrella R., Pantoja O., Kirch H.-H., Bohnert H. J.. Aquaporin localization - how valid are the TIP and PIP labels?.  Trends in Plant Sciences. (1999);  4 86-88
  • 4 Booij P. P., Roberts M. R., Vogelzang S. A., Kraayenhof R., DeBoer A. H.. 14-3-3 proteins double the number of outward-rectifying K+ channels available for the activation in tomato cells.  Plant Journal. (1999);  20 673-683
  • 5 Bunney T. D., van Walraven H. S., DeBoer A. H.. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase.  Proceedings of the National Academy of Sciences of the USA. (2001);  98 4249-4254
  • 6 Bunney T. D., Van den Wijngaard P. W. J., De Boer A. H.. 14-3-3 protein regulation of proton pumps and ion channels.  Plant Molecular Biology. (2002);  50 1041-1051
  • 7 Cai G., Moscatelli A., Del CAsino C., Chevrier V., Mazzi M., Tiezzi A., Cresti M.. The anti-centrosome monoclonal antibody 6C6 reacts with a plasma membrane-associated polypeptide of 77 kDa from Nicotiana tabacum pollen tubes.  Protoplasma. (1996);  190 68-78
  • 8 Cutler S. R., Ehrhardt D. W., Griffitts J. S., Somerville C. R.. Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 3718-3723
  • 9 Datta R., Chamusco K. C., Chourey P. S.. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize.  Plant Physiology. (2002);  130 1645-1656
  • 10 Daugherty C. J., Rooney M. F., Miller P. W., Ferl R. J.. Molecular organization and tissue-specific expression of an Arabidopsis 14-3-3 gene.  Plant Cell. (1996);  8 1239-1248
  • 11 Feijó J. A., Malhó R., Obermeyer G.. Ion dynamics and its possible role during in vitro pollen germination and tube growth.  Protoplasma. (1995);  187 155-167
  • 12 Ferl R. J.. 14-3-3 proteins: regulation of signal-induced events.  Physiologia Plantarum. (2004);  120 173-178
  • 13 Fuglsang A. T., Visconti S., Drumm K., Jahn T., Stensballe A., Mattei M., Jensen O. N., Aducci P., Palmgren M. G.. Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr (946)-Thr-Val and requires phosphorylation of the THR (947).  Journal of Biological Chemistry. (1999);  274 36774-36780
  • 14 Fulgosi H., Soll J., de Faria Maraschin S., Korthout H. A. A. J., Wang M., Testerink C.. 14-3-3 proteins and plant development.  Plant Molecular Biology. (2002);  50 1019-1029
  • 15 Gibeaut D. M., Carpita N. C.. Separation of membranes by flotation centrifugation for in vitro synthesis of plant cell wall polysaccharides.  Protoplasma. (1990);  156 82-93
  • 16 Hodges T. K., Leonard R. T.. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots.  Methods in Enzymology. (1974);  32 392-406
  • 17 Hoidn C., Puchner E., Pertl H., Holztrattner E., Obermeyer G.. Non-diffusional release of allergens from pollen grains of Artemisia vulgaris and Lilium longiflorum depends mainly on the type of allergen.  International Archives of Allergy and Immunology. (2005);  381 in press
  • 18 Holdaway-Clarke T., Hepler P. K.. Control of pollen tube growth: role of ion gradients and fluxes.  New Phytologist. (2003);  159 539-563
  • 19 Huber S. C., MacKintosh C., Kaiser W. M.. Metabolic enzymes as targets for 14-3-3 proteins.  Plant Molecular Biology. (2002);  50 1053-1063
  • 20 Korthout H. A. A. J., DeBoer A. H.. A fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs.  Plant Cell. (1994);  6 1681-1692
  • 21 Maeshima M., Yoshida S.. Purification and properties of the vacuolar membrane proton-translocating pyrophosphatase from mung bean.  Journal of Biological Chemistry. (1989);  264 20068-20073
  • 22 Malhó R., Pais M. S. S.. Kinetics and hydrodynamics of Agapanthus umbellatus pollen tube growth: A structural and stereological study.  Sexual Plant Reproduction. (1992);  5 163-168
  • 23 Maraschin S. d. F., Lamers G. E. M., de Pater B. S., Spaink H. P., Wang M.. 14-3-3 isoforms and pattern formation during barley microspore embryogenesis.  Journal of Experimental Botany. (2003);  54 1033-1043
  • 24 Marra M., Fullone M. R., Fogliano V., Pen J., Mattei M., Masi S., Aducci P.. The 30 kDa protein present in purified fusicoccin receptor preparations is a 14-3-3-like protein.  Plant Physiology. (1994);  106 1497-1501
  • 25 May T., Soll J.. 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants.  Plant Cell. (2000);  12 53-63
  • 26 Moorhead G., Douglas P., Cotelle V., Harthill J., Morrice N., Meek S., Deiting U., Stitt M., Scarabel M., Aitken A., MacKintosh C.. Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3.  Plant Journal. (1999);  18 1-12
  • 27 Morsomme P., Boutry M.. The plant plasma membrane H+-ATPase: structure, function and regulation.  Biochimica et Biophysica Acta. (2000);  1465 1-16
  • 28 Muslin A. J., Xing H.. 14-3-3 proteins: regulation of subcellular localization by molecular interference.  Cellular Signaling. (2000);  12 703-709
  • 29 Nufer O., Hauri H.-P.. ER export: call 14-3-3.  Current Biology. (2003);  13 R391-R393
  • 30 Obermeyer G., Kriechbaumer R., Strasser D., Maschessnig A., Bentrup F.-W.. Boric acid stimulates the plasma membrane H+-ATPase of ungerminated lily pollen grains.  Physiologia Plantarum. (1996);  98 281-290
  • 31 Oecking C., Eckerskorn C., Weiler E. W.. The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins.  FEBS Letters. (1994);  352 163-166
  • 32 Pertl H., Himly M., Gehwolf R., Kriechbaumer R., Strasser D., Michalke W., Richter K., Ferreira F., Obermeyer G.. Molecular and physiological characterisation of a 14-3-3 protein from lily pollen grains regulating the activity of the plasma membrane H+-ATPase during pollen grain germination and tube growth.  Planta. (2001);  213 132-141
  • 33 Ratajcak R., Richter J., Lüttge U.. Adaption of the tonoplast V-type H+ATPase of Mesembryanthemum cristallinum to salt stress, C3-CAM transition and plant age.  Plant, Cell and Environment. (1994);  17 1101-1112
  • 34 Ratajcak R., Hinz G., Robinson D. G.. Localization of pyrophosphatase in membranes of cauliflower inflorescence cells.  Planta. (1999);  208 205-211
  • 35 Roberts M. R., Bowles D. J.. Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants.  Plant Physiology. (1999);  119 1243-1250
  • 36 Roberts M. R., Salinas J., Collinge D. B.. 14-3-3 proteins and the response to abiotic and biotic stress.  Plant Molecular Biology. (2002);  50 1031-1039
  • 37 Roberts M. R.. 14-3-3 proteins find new partners in plant cell signalling.  Trends in Plant Sciences. (2003);  8 218-223
  • 38 Robinson D. G., Haschke H.-P., Hinz G., Hoh B., Maeshima M., Marty F.. Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons.  Planta. (1996);  198 95-103
  • 39 Rosenquist M., Sehnke P., Ferl R. J., Sommarin M., Larsson C.. Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity?.  Journal of Molecular Evolution. (2000);  51 446-458
  • 40 Saalbach G., Schwerdel M., Natura G., Buschmann P., Christov V., Dahse I.. Over expression of plant 14-3-3 proteins in tobacco: enhancement of the plasmalemma K+ conductance of mesophyll cells.  FEBS Letters. (1997);  413 294-298
  • 41 Sehnke P., Rosenquist M., Alsterford M., DeLille J., Sommarin M., Larsson C., Ferl R. J.. Evolution and isoform specificity of plant 14-3-3 proteins.  Plant Molecular Biology. (2002);  50 1011-1018
  • 42 Svennelid F., Olsson A., Piotroski M., Rosenquist M., Ottman C., Larsson C., Oecking C., Sommarin M.. Phosphorylation of Thr-948 at the C-terminus of the plasma membrane H+-ATPase creates a binding site for the regulatory 14-3-3 protein.  Plant Cell. (1999);  11 2379-2391
  • 43 Turner A., Bacic A., Harris P. J., Read S. M.. Membrane fractionation and enrichment of callose syntase from pollen tubes of Nicotiana alata Link et Otto.  Planta. (1998);  205 380-388
  • 44 van den Wijngaard P. W. J., Bunney T. D., Roobeek I., Schönknecht G., De Boer A. H.. Slow vacuolar channels from barley mesophyll cells are regulated by 14-3-3 proteins.  FEBS Letters. (2001);  488 100-104
  • 45 Voigt J., Liebich I., Kieß M., Frank R.. Subcellular distribution of 14-3-3 proteins in the unicellular green alga Chlamydomonas reinhardtii. .  European Journal of Biochemistry. (2001);  268 6449-6457
  • 46 Voigt J., Frank R.. 14-3-3 proteins are constituents of the insoluble gycoprotein framework of the Chlamydomonas cell wall.  Plant Cell. (2003);  15 1399-1413
  • 47 Widell S., Larsson C.. A critical evaluation of markers used in plasma membrane purification. Larsson, C. and Moller, I. M., eds. The Plant Plasma Membrane. Heidelberg; Springer (1990): 16-43
  • 48 Yuan H., Michelsen K., Schwappach B.. 14-3-3 dimers probe the assembly status of multimeric membrane proteins.  Current Biology. (2003);  13 638-646

G. Obermeyer

Molecular Plant Physiology
Div. Allergy and Immunology
Dept. Molecular Biology
University of Salzburg

Hellbrunnerstraße 34

5020 Salzburg



Editor: G. Thiel