Plant Biol (Stuttg) 2005; 7(2): 182-189
DOI: 10.1055/s-2005-837469
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Environmental Constraints on Phenology and Internal Nutrient Cycling in the Mediterranean Winter-Deciduous Shrub Amelanchier ovalis Medicus

R. Milla1 , P. Castro-Díez2 , M. Maestro-Martínez1 , G. Montserrat-Martí1
  • 1Instituto Pirenaico de Ecología (C.S.I.C.), P.O. Box 202, 50080 Zaragoza, Spain
  • 2Departamento de Ecología, Facultad de Ciencias, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
Further Information

Publication History

Received: June 8, 2004

Accepted: December 6, 2004

Publication Date:
09 February 2005 (online)


The functional adjustments of winter-deciduous perennials to Mediterranean conditions have received little attention. The objectives of this study were: (i) to determine whether Amelanchier ovalis, a winter-deciduous shrub of Mediterranean and sub-Mediterranean regions, has nutritional and phenological traits in common with temperate zone deciduous trees and shrubs and (ii) to determine the constraints of Mediterranean environmental conditions on these traits. Over two years, phenology and nitrogen, and phosphorus concentrations were monitored monthly in the crown of A. ovalis. Leaf longevity, survival and nutrient resorption from senescing leaves were used to infer nutrient use efficiency and retention times of nutrients within the crown. In A. ovalis, bud burst was much earlier than in temperate deciduous trees and shrubs. Most vegetative and reproductive growth occurred in spring. Limited phenological development took place during the summer drought period. Unexpectedly, leaf shedding was very gradual, which might be related to water shortages in summer. Leaf longevity, nutrient resorption from senescing leaves, and maximum leaf nutrient concentrations indicated that nutrient retention times were short and nutrient use efficiency was low compared to that found in temperate deciduous plants and co-occurring Mediterranean evergreens. A. ovalis exhibited phenological development appropriate for a Mediterranean climate, although its limited ability to retain nutrients likely restricts the types of sites that it can occupy.


  • 1 Addicott F.. Abscission. Berkeley; University of California Press (1982): 369
  • 2 Aerts R.. Nutrient use efficiency in evergreen and deciduous species from heathlands.  Oecologia. (1990);  84 391-397
  • 3 Aerts R.. Nutrient resorption from senescing leaves of perennials: are there general patterns?.  Journal of Ecology. (1996);  84 597-608
  • 4 Aerts R., Chapin III. F. S.. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns.  Advances in Ecological Research. (2000);  30 1-67
  • 5 Archibold O. W.. Ecology of World Vegetation. London; Chapman and Hall (1995): 510
  • 7 Berendse F.. Competition between plant populations at low and high nutrient supplies.  Oikos. (1994);  71 253-260
  • 8 Borchert R., Rivera G., Hagnauer W.. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain.  Biotropica. (2002);  34 27-29
  • 9 Castro-Díez P., Montserrat-Martí G.. Phenological pattern of fifteen Mediterranean phanaerophytes from Quercus ilex communities of NE-Spain.  Plant Ecology. (1998);  139 103-112
  • 10 Chmielewski F. M., Rötzer T.. Response of tree phenology to climate change across Europe.  Agricultural and Forest Meteorology. (2001);  108 101-112
  • 11 Cole D. W., Rapp M.. Elemental cycling in forest ecosystems. Reichle, D. E., ed. Dynamic Properties of Forest Ecosystems. Cambridge; Cambridge University Press (1981): 341-409
  • 12 Feeny P.. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars.  Ecology. (1970);  51 565-581
  • 13 Feller U., Fischer A.. Nitrogen metabolism in senescing leaves.  Critical Reviews in Plant Science. (1994);  13 241-273
  • 14 Fotelli M. N.. Water stress responses of seedlings of four Mediterranean oak species.  Tree Physiology. (2000);  20 1065-1075
  • 15 Givnish T.. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox.  Silva Fennica. (2002);  36 703-743
  • 16 Hänninen H.. Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of bud burst phenology.  Canadian Journal of Botany. (1995);  73 183-201
  • 17 Herrera C. M.. Seasonal variation in the quality of fruits and diffuse coevolution between plants and avian dispersers.  Ecology. (1982);  29 597-604
  • 18 Houghton J. T., Ding Y., Griggs D. J., Noguer M., van der Linden P. J., Xiaosu D.. Climate Change 2001: The Scientific Basis. Cambridge; Cambridge University Press (2001): 944
  • 19 Kay Q. O. N.. Edible fruits in a cool climate: the evolution and ecology of endozoochory in the European flora. Marchal, C. and Grace, J., eds. Fruit and Seed Production. Cambridge; Cambridge University Press (1992): 217-250
  • 20 Kikuzawa K.. Leaf survival of woody plants in deciduous broad-leaved forests. 1. Tall trees.  Canadian Journal of Botany. (1983);  61 2133-2139
  • 21 Kikuzawa K.. Leaf survival of woody plants in deciduous broad-leaved forests. 2. Small trees and shrubs.  Canadian Journal of Botany. (1984);  62 2551-2556
  • 22 Kochmer J. P., Handel S. N.. Constraints and competition in the evolution of flowering phenology.  Ecological Monographs. (1986);  56 303-325
  • 23 Kramer K., Leinonen I., Loustau D.. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and mediterranean forests ecosystems: an overview.  International Journal of Biometeorology. (2000);  44 67-75
  • 24 Larcher W.. Temperature stress and survival ability of Mediterranean sclerophyllous plants.  Plant Biosystems. (2000);  134 279-295
  • 25 Larcher W.. Physiological Plant Ecology. Ecophysiology and Stress Physiology of Functional Groups. Berlin; Springer-Verlag (2003): 513
  • 26 Lechowicz M. J.. Seasonality of flowering and fruiting in temperate forest trees.  Canadian Journal of Botany. (1995);  73 175-182
  • 27 López-González G.. Los Árboles y Arbustos de la Península Ibérica y Baleares. Madrid; Mundi-Prensa (2002): 1727
  • 28 Mediavilla S.. Intercambios gaseosos en especies leñosas mediterráneas. Efectos de la longevidad y de otros rasgos foliares sobre la eficiencia fotosintética en el empleo del agua y del nitrógeno. PhD thesis, Department of Ecology, University of Salamanca, Spain. (1999)
  • 29 Mediavilla S., Escudero A.. Relative growth rate of leaf biomass and leaf nitrogen content in several Mediterranean woody species.  Plant Ecology. (2003);  168 321-332
  • 30 Millard P.. Ecophysiology of the internal cycling of nitrogen for tree growth.  Journal of Plant Nutrition and Soil Science. (1996);  159 1-10
  • 31 Millard P., Proe M. F.. Leaf demography and the seasonal internal nutrient cycling of nitrogen in sycamore (Acer pseudoplatanus L.) seedlings in relation to nitrogen supply.  New Phytologist. (1991);  117 587-596
  • 32 Mitrakos K. A.. A theory for Mediterranean plant life.  Acta Oecologica. (1980);  1 245-252
  • 33 Monk C. D.. An ecological significance of evergreenness.  Ecology. (1966);  47 504-505
  • 34 Montserrat-Martí G., Pérez-Rontomé C.. Fruit growth dynamics and their effects on the phenological pattern of native Pistacia populations in NE Spain.  Flora. (2002);  197 161-174
  • 35 Mooney H. A.. Carbon-gaining capacity and allocation patterns of Mediterranean climate plants. Kruger, F. J., Mitchell, D. T., and Jarvis, J. U. M., eds. Mediterranean-Type Ecosystems. The Role of Nutrients. Berlin; Springer-Verlag (1983): 103-119
  • 36 Mooney H. A., Harrison A. T., Morrow P. A.. Environmental limitations of photosynthesis on a California evergreen shrub.  Oecologia. (1975);  19 293-301
  • 37 Orshan G., Le Floc'h E., Le Roux A., Montenegro G.. Plant phenomorphology as related to summer drought Mediterranean type ecosystems. di Castri, F., Floret, C., Rambal, S., and Roy, J., eds. Time Scales and Water Stress. Paris; I.U.B.S. (1988): 111-123
  • 38 Peñuelas J., Filella I., Comas P.. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region.  Global Change Biology. (2002);  8 531-544
  • 39 Pugnaire F. I., Chapin F. S.. Environmental and physiological factors governing nutrient resorption efficiency in barley.  Oecologia. (1992);  90 120-126
  • 40 Rapp M., Santa-Regina I., Rico M., Gallego H. A.. Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forests.  Forest Ecology and Management. (1999);  119 39-49
  • 41 Rose M. A., Biernacka B.. Seasonal patterns of nutrient and dry weight accumulation in Freeman maple.  HortScience. (1999);  34 91-95
  • 42 Salleo S., Nardini A., LoGullo M. A.. Is sclerophylly of Mediterranean evergreens an adaptation to drought?.  New Phytologist. (1997);  135 603-612
  • 43 Serrasoles I., Diego V., Bonilla D.. Soil nitrogen dynamics. Rodá, F., Retana, J., Gracia, C. A., and Bellot, J., eds. Ecology of Mediterranean Evergreen Oak Forests. Berlin; Springer-Verlag (1999): 223-236
  • 44 Silla F., Escudero A.. Nitrogen-use efficiency: trade-offs between N productivity and mean residence time at organ, plant and population levels.  Functional Ecology. (2004);  18 511-521
  • 45 Small E.. Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants.  Canadian Journal of Botany. (1972);  50 2227-2233
  • 46 Specht R. L.. A comparison of the sclerophyllous vegetation characteristic of the Mediterranean type climates in France, California, and Southern Australia.  Australian Journal of Botany. (1969);  17 293-308
  • 47 Steeves M. W., Steeves T. A.. Inflorescence development in Amelanchier alnifolia. .  Canadian Journal of Botany. (1990);  68 1680-1688
  • 48 Suc J. P.. Origin and evolution of the Mediterranean vegetation and climate in Europe.  Nature. (1984);  307 429-432
  • 49 Tenhunen J. D., Beyschlag W., Lange O. L., and Harley P. C.. A model of net photosynthesis for leaves of the sclerophyll Quercus coccifera. . Tenhunen, J. D., Catarino, F. M., Lange, O. L., and Oechel, W. C., eds. Plant Response to Stress. Functional Analysis in Mediterranean Ecosystems. Berlin; Springer-Verlag (1987): 339-354
  • 50 Tenhunen J. D., Sala A., Harley P. C., Dougherty R. L., Reynolds J. F.. Factors influencing carbon fixation and water use by Mediterranean sclerophyll shrubs during summer drought.  Oecologia. (1990);  82 381-393
  • 52 Wagenitz G.. Wörterbuch der Botanik. Jena; Gustav Fischer Verlag (1996): 532

R. Milla

Instituto Pirenaico de Ecología (C.S.I.C.)

P.O. Box 202

50080 Zaragoza



Editor: M. C. Ball