Abstract
This account provides an overview, in varying depth, of our research into diverse
aspects of acetylene chemistry over the last three decades. Initial studies with acetylenic
natural products (Wyerone, Crepenynic Acid) were followed several years later with
synthetically oriented projects. These involved enediyne mimics of natural products
(Taxamycins) and unusual selenium dioxide oxidations of α-alkynyl ethers. Helical
acetylenic cyclophanes (Revolvenynes) were synthesized by sequential palladium- and
copper-mediated reactions, which set the precedent for later research. Related cyclophanes
as potential intermediates for buckminsterfullerene (C60) are discussed. Helical carbocyclic
liquid crystalline and heterocyclic (copper-free and complexed) cyclophanes were also
prepared. A very strained 153.5° triple bond was discovered which reacted with cyclohexadiene
to form the bicyclic adduct in situ and extruded ethylene to generate a new cyclophane
with an annulated benzene ring attached. In situ desilylation-dimerization sequences
are described and a table is presented for guidance to predict the preferred product
from competing intra- and intermolecular copper-mediated coupling pathways. The synthetic
details for two different helical, π-stacked C60 cyclophane families with para and meta bonded caps and different structural motifs are presented (Scheme
[13 ]
and Scheme
[14 ]
) for comparison with Scheme
[1 ]
. These concepts are being extended to the synthesis of allenocyclophanes. A brief
discussion of a π-extended boron-azulene complex is followed by a summary of magnesium-mediated
carbometallations of propargyl alcohols. A final comment reexamines our cyclophane-based
approach to buckminsterfullerene.
1 Acetylene Natural Products (Wyerone, Crepenynic Acid)
2 Enediynes (Taxamycins)
3 Acetylenic Cyclophanes
3.1 Revolvenynes
3.2 Enediynes for C60?
3.3 Carbocycles
3.4 Heterocycles
3.5 C60 Carbocycles
3.6 Termini Separation
4 Allenophanes
5 π-Conjugated Boranes
6 Propargyl Alcohols (Magnesium-Mediated Carbometallations)
7 Buckminsterfullerene (Revisited)
8 Conclusion
Key words
enediyne - acetylene - palladium - copper - cyclophanes - propargyl alcohols - magnesium
- C60
References <A NAME="RA35204ST-1">1 </A>
I have taken Peter at his word and this account is not a comprehensive review but
a personal journey through the forest of organic chemistry. I apologize for only passing
credit to the chemical literature and the discoveries of others that made our work
possible.
<A NAME="RA35204ST-2A">2a </A>
Fallis AG.
Can. J. Chem.
1984,
62:
183
<A NAME="RA35204ST-2B">2b </A>
Fallis AG.
Lu YF.
Adv. Cycloaddit.
1993,
3:
1
<A NAME="RA35204ST-2C">2c </A>
Fallis AG.
Pure Appl. Chem.
1997,
69:
495
<A NAME="RA35204ST-2D">2d </A>
Fallis AG.
Acc. Chem. Res.
1999,
32:
464
<A NAME="RA35204ST-2E">2e </A>
Fallis AG.
Brinza I.
Tetrahedron
1997,
53:
17543
<A NAME="RA35204ST-2F">2f </A>
Fallis AG.
Forgione P.
Tetrahedron
2001,
57:
5899
<A NAME="RA35204ST-3">3 </A>
Dewick PM.
Medicinal Natural Products. A Biosynthetic Approach
2nd ed.:
J. Wiley and Sons;
Chichester:
2002.
p.48-49
<A NAME="RA35204ST-4">4 </A>
I later learned that his wife apparently preferred the bustle and bright lights of
London to the pastoral scholarly life of Cambridge!
<A NAME="RA35204ST-5">5 </A>
Fawcett CH.
Spencer DM.
Wain RL.
Fallis AG.
Jones ERH.
Lequan M.
Page CB.
Thaller V.
Shubrook DC.
Whitham PM.
J. Chem. Soc. C
1968,
2455
<A NAME="RA35204ST-6A">6a </A>
Fallis AG.
Jones ERH.
Thaller V.
J. Chem. Soc., Chem. Commun.
1969,
924
<A NAME="RA35204ST-6B">6b </A>
Fallis AG.
Hearn MTW.
Jones ERH.
Thaller V.
Turner JL.
J. Chem. Soc., Perkin Trans. 1
1973,
743
<A NAME="RA35204ST-7">7 </A>
Birkenbach L.
Gonbeau J.
Chem Ber.
1934,
67:
1420
<A NAME="RA35204ST-8">8 </A>
Cadiot P.
Chodkiewicz W. In Chemistry of Acetylenes
Viehe HJ.
M. Dekker;
New York, NY:
1969.
p.616
<A NAME="RA35204ST-9">9 </A>
Reed DW.
Polichuk DR.
Buist PH.
Ambrose SJ.
Sasata RJ.
Savile CK.
Ross ARS.
Covello PS.
J. Am. Chem. Soc.
2003,
125:
10635
<A NAME="RA35204ST-10A">10a </A>
Lu YF.
Fallis AG.
Tetrahedron Lett.
1993,
34:
3367
<A NAME="RA35204ST-10B">10b </A>
Lu Y.-F.
Fallis AG.
Can. J. Chem.
1995,
73:
2239
<A NAME="RA35204ST-11">11 </A>
Shea KJ.
Gilman JW.
Haffner CD.
Dougherty TK.
J. Am. Chem. Soc.
1986,
108:
4953
<A NAME="RA35204ST-12A">12a </A>
Nicolaou KC.
Claiborne CF.
Nantermet PG.
Couladouros EA.
Sorensen EJ.
J. Am. Chem. Soc.
1994,
116:
1591
<A NAME="RA35204ST-12B">12b </A>
Morihira K.
Nishimori T.
Kusama H.
Horiguchi Y.
Kuwajima I.
Tsuruo T.
Bioorg. Med. Chem. Lett.
1998,
8:
2973
<A NAME="RA35204ST-12C">12c </A>
Smil DV.
Laurent A.
Fallis AG.
Tetrahedron Lett.
2003,
44:
5129
<A NAME="RA35204ST-13A">13a </A>
Lu Y.-F.
Harwig CW.
Fallis AG.
J. Org. Chem.
1993,
58:
4202
<A NAME="RA35204ST-13B">13b </A>
Lu Y.-F.
Harwig CW.
Fallis AG.
Can. J. Chem.
1995,
73:
2253
<A NAME="RA35204ST-14">14 </A>
Harwig CW.
Py S.
Fallis AG.
J. Org. Chem.
1997,
62:
7902
<A NAME="RA35204ST-15">15 </A>
Crevisy C.
Beau J.-M.
Tetrahedron Lett.
1991,
32:
3171
<A NAME="RA35204ST-16A">16a </A>
Okude Y.
Hirano S.
Hiyama T.
Nozaki H.
J. Am. Chem. Soc.
1977,
99:
3175
<A NAME="RA35204ST-16B">16b </A>
Jin H.
Uenishi J.
Christ WJ.
Kishi Y.
J. Am. Chem. Soc.
1987,
109:
5644
<A NAME="RA35204ST-17">17 </A>
Didier E.
Fouque F.
Taillepied I.
Commerçon A.
Tetrahedron Lett.
1994,
35:
2349
<A NAME="RA35204ST-18">18 </A>
Py S.
Harwig CW.
Banerjee S.
Brown DL.
Fallis AG.
Tetrahedron Lett.
1998,
39:
6139
<A NAME="RA35204ST-19">19 </A>
Comanita BM.
Heuft MA.
Rietveld T.
Fallis AG.
Isr. J. Chem.
2000,
40:
241
<A NAME="RA35204ST-20">20 </A>
Romero MA.
Fallis AG.
Tetrahedron Lett.
1994,
35:
4711
<A NAME="RA35204ST-21">21 </A>
Canada has a strategic grant program to support research in collaboration with an
industrial partner, provided there is applied potential that will benefit society.
<A NAME="RA35204ST-22">22 </A>
Rubin Y.
Parker TC.
Khan SI.
Holliman CL.
McElvany SW.
J. Am. Chem. Soc.
1996,
118:
5308
<A NAME="RA35204ST-23">23 </A>
Collins SK.
Yap GPA.
Fallis AG.
Angew. Chem. Int. Ed.
2000,
39:
385
<A NAME="RA35204ST-24">24 </A>
Collins SK.
Yap GPA.
Fallis AG.
Org. Lett.
2000,
2:
3185
<A NAME="RA35204ST-25A">25a </A>
Nuckolls C.
Katz TJ.
J. Am. Chem. Soc.
1998,
120:
9541
<A NAME="RA35204ST-25B">25b </A>
Nuckolls C.
Katz TJ.
Katz G.
Collings PJ.
Castellanos L.
J. Am. Chem. Soc.
1999,
121:
79
<A NAME="RA35204ST-26">26 </A>
Collins SK.
Yapp GP.
Fallis AG.
Org. Lett.
2002,
4:
11
<A NAME="RA35204ST-27A">27a </A>
Ikegashira K.
Nishihara Y.
Hirabayashi K.
Mori A.
Hiyama T.
Chem. Commun.
1997,
1039
<A NAME="RA35204ST-27B">27b </A>
Haley MM.
Bell ML.
Brand SC.
Kimball DB.
Pak JJ.
Wan WB.
Tetrahedron Lett.
1997,
38:
7483
<A NAME="RA35204ST-27C">27c </A>
Nishihara Y.
Ikegashira K.
Mori A.
Hiyama T.
Tetrahedron Lett.
1998,
39:
4075
<A NAME="RA35204ST-28">28 </A>
Heuft MA.
Collins SK.
Yap GPA.
Fallis AG.
Org. Lett.
2001,
3:
2883
<A NAME="RA35204ST-29">29 </A>
Joshi HS.
Jamshidi R.
Tor Y.
Angew. Chem. Int. Ed.
1999,
38:
2722
<A NAME="RA35204ST-30">30 </A>
Shvo Y.
Taylor EC.
Mislow K.
Raban H.
J. Am. Chem. Soc.
1967,
89:
4910
<A NAME="RA35204ST-31">31 </A>
Heuft MA.
Fallis G.
Angew. Chem. Int. Ed.
2002,
41:
4520
For leading references for the syntheses of interesting acetylenic molecules see:
<A NAME="RA35204ST-32A">32a </A>
Wu Z.
Lee S.
Moore JS.
J. Am. Chem. Soc.
1992,
114:
8730
<A NAME="RA35204ST-32B">32b </A>
Yu Z.
Kahr M.
Walker KL.
Wilkins CL.
Moore JS.
J. Am. Chem. Soc.
1994,
116:
4537
<A NAME="RA35204ST-32C">32c </A>
Moore JS.
Acc. Chem. Res.
1997,
30:
402
<A NAME="RA35204ST-32D">32d </A>
Boese R.
Matzger AJ.
Vollhardt KPC.
J. Am. Chem. Soc.
1997,
119:
2052
<A NAME="RA35204ST-32E">32e </A>
Haley MM.
Bell ML.
English JJ.
Johnson CA.
Weakley TJR.
J. Am. Chem. Soc.
1997,
119:
2956
<A NAME="RA35204ST-32F">32f </A>
Haley MM.
Brand SC.
Pak JJ.
Angew. Chem., Int. Ed. Engl.
1997,
36:
836
<A NAME="RA35204ST-32G">32g </A>
Wan WB.
Kimball DB.
Haley MM.
Tetrahedron Lett.
1998,
39:
6795
<A NAME="RA35204ST-32H">32h </A>
Matzger AJ.
Vollhardt KPC.
Tetrahedron Lett.
1998,
39:
6791
<A NAME="RA35204ST-32I">32i </A>
Wan WB.
Kimball DB.
Haley MM.
Tetrahedron Lett.
1998,
39:
6795
<A NAME="RA35204ST-32J">32j </A>
Matzger AJ.
Vollhardt KPC.
Tetrahedron Lett.
1998,
39:
6791
<A NAME="RA35204ST-32K">32k </A>
Bunz UHF.
Rubin Y.
Tobe Y.
Chem. Soc. Rev.
1999,
28:
107
<A NAME="RA35204ST-32L">32l </A>
Pak JJ.
Weakley TJR.
Haley MM.
J. Am. Chem. Soc.
1999,
121:
8182
<A NAME="RA35204ST-32M">32m </A>
Pak JJ.
Weakley TJR.
Haley MM.
J. Am. Chem. Soc.
1999,
121:
8182
<A NAME="RA35204ST-32N">32n </A>
Kehoe JM.
Kiley JH.
English JJ.
Johnson CA.
Peterson RC.
Haley MM.
Org. Lett.
2000,
2:
969
<A NAME="RA35204ST-32O">32o </A>
Wan WB.
Haley MM.
J. Org. Chem.
2001,
66:
3893
<A NAME="RA35204ST-32P">32p </A>
Boydston AJ.
Haley MM.
Williams RV.
Armantrout JR.
J. Org. Chem.
2002,
67:
8812
<A NAME="RA35204ST-32Q">32q </A>
Bangcuyo CG.
Smith MD.
Bunz UHF.
Synlett
2004,
169
<A NAME="RA35204ST-33">33 </A>
Heuft MA.
Collins SK.
Fallis AG.
Org. Lett.
2003,
5:
1911
<A NAME="RA35204ST-34">34 </A>
Ohira S.
Synth. Commun.
1989,
19:
561
<A NAME="RA35204ST-35">35 </A>
Tsuzuki S.
Honda K.
Uchimaru T.
Mikami M.
Tanaba K.
J. Am. Chem. Soc.
2000,
124:
104
<A NAME="RA35204ST-36">36 </A>
Universal Force Field (UFF) calculations were obtained using the Cerius2 -Dmol3 molecular modeling suite from Molecular Simulations Inc. San Diego, 1999. We thank
S. Drouin and D. Fogg (University of Ottawa) for assistance.
<A NAME="RA35204ST-37">37 </A>
Heuft MA.
Ph.D. Thesis
University of Ottawa;
Ontario:
2003.
<A NAME="RA35204ST-38">38 </A>
Thorand S.
Vogtle F.
Krause K.
Angew. Chem. Int. Ed.
1999,
38:
3721
<A NAME="RA35204ST-39">39 </A>
Clay, M. D. unpublished results.
<A NAME="RA35204ST-40A">40a </A>
Yamaguchi S.
Akiyama S.
Tamao K.
J. Am. Chem. Soc.
2000,
122:
6335
<A NAME="RA35204ST-40B">40b </A>
Yamaguchi S.
Shiraska T.
Tamo K.
Org. Lett.
2000,
2:
4129
<A NAME="RA35204ST-41">41 </A>
Tiffen JL.
M.Sc. Thesis
University of Ottawa;
Ontario:
2002.
<A NAME="RA35204ST-42A">42a </A>
Eisch JJ.
Merkley JH.
J. Organomet. Chem.
1969,
20:
27
<A NAME="RA35204ST-42B">42b </A>
Richey HG.
von Rein FW.
J. Organomet. Chem.
1969,
20:
32
<A NAME="RA35204ST-42C">42c </A>
Jousseaume B.
Duboudin JG.
J. Organomet. Chem.
1975,
C1
<A NAME="RA35204ST-43A">43a </A>
Wong T.
Tjepkema MW.
Audrain H.
Wilson PD.
Fallis AG.
Tetrahedron Lett.
1996,
37:
755
<A NAME="RA35204ST-43B">43b </A>
Forgione P.
Fallis AG.
Tetrahedron Lett.
2000,
41:
11
<A NAME="RA35204ST-43C">43c </A>
Forgione P.
Wilson PD.
Fallis AG.
Tetrahedron Lett.
2000,
41:
17
<A NAME="RA35204ST-43D">43d </A>
Forgione P.
Wilson PD.
Yap GPA.
Fallis AG.
Synthesis
2000,
921
<A NAME="RA35204ST-43E">43e </A>
Villava-Servin NP.
Laurent A.
Fallis AG.
Synlett
2003,
1261
<A NAME="RA35204ST-44">44 </A>
Tessier PJ.
Penwell AJ.
Souza FES.
Fallis AG.
Org. Lett.
2003,
5:
2989
<A NAME="RA35204ST-45">45 </A>
Tessier PJ.
M.Sc. Thesis
University of Ottawa;
Ontario:
2003.
<A NAME="RA35204ST-46">46 </A>
Matsuura A.
Komatsu K.
J. Am. Chem. Soc.
2001,
123:
1768
<A NAME="RA35204ST-47A">47a </A>
Lei A.
Srivastava M.
Zhang X.
J. Org. Chem.
2002,
67:
1969
<A NAME="RA35204ST-47B">47b </A>
Marsden JA.
Miller JJ.
Haley MM.
Angew. Chem. Int. Ed.
2004,
43:
1694
<A NAME="RA35204ST-48">48 </A>
After submission of this manuscript for review, a current group member volunteered
to examine this idea. The Grignard 134 could not be generated from 81 with magnesium turnings, but with Reike® magnesium it acted as a base and the chloride was eliminated to generate the triple
bond (Scheme
[13 ]
); consequently, commencing with a halobenzene is more prudent.