Newer statistical methods for modeling and prediction of long-term follow-up in schizophrenia
are presented. These include the extended Cox model, the Generalized Estimating Equations
(GEE) method and the Artificial Neural Networks (ANN) approach.
References
- 1
Albert P S.
Longitudinal data analysis (repeated measures) in clinical trials.
Stat Med.
1999;
18
1707-1732
- 2
Angst J, Gamma A, Sellaro R, Lavori P W, Zhang H.
Recurrence of bipolar disorders and major depression - A life-long perspective.
Eur Arch Psychiatry Clin Neurosci.
2003;
253
236-240
- 3
Anderson P K, Gill R D.
Cox’s regression model for counting processes: A large sample study.
Ann Stat.
1982;
10
1100-1120
- 4 Anderson P K, Borgan O, Gill R D, Keiding N. Statistical models based on counting
processes. Heidelberg-New York; Springer 1992
- 5 Awad A G. Prediction research of neuroleptic treatment outcome in schizophrenia
- state of the art: 1978-1993. In: Gaebel W, Awad AW, (editors)
Prediction of neuroleptic treatment outcome in schizophrenia. Wien; Springer 1994: pp 1-14
- 6 Breiman L, Friedman J H, Olshen R A, Stone C L. Classification and regression trees
(CART). Monterey; Wadsworth 1984
- 7
Burton P, Gurrin L, Sly P.
Extending the simple linear regression model to account for correlated responses:
An introduction to Generalized Estimating Equations and Multilevel Mixed Modelling.
Stat Med.
1998;
17
1261-1291
- 8
Cox D R.
Regression models and life tables.
J Royal Stat Soc.
1972;
34 (Series B)
187 - 220
- 9
Doering S, Müller E, Köpcke W, Gaebel W, Linden M, Müller P, Müller-Spahn F, Tegeler J,
Schüssler G.
Predicators of relapse and rehospitalization in schizophrenia and schizoaffective
disorders.
Schizophr Bull.
1998;
24
187-198
- 10
Everitt B S, Landau S.
The use of multivariate statistical methods in psychiatry.
Stat Methods Med Res.
1998;
7
253-277
- 11
Fitzmaurice G M, Laird N M, Zahner G E, Daskalakis C.
Bivariate logistic regression analysis of childhood psychopathology ratings using
multiple informants.
Am J Epidemiol.
1995;
142
1194-1203
- 12 Fleming T R, Harrington D P. Counting processes and survival analysis. New York;
Wiley 1991
- 13 Gaebel W. Prediction research of outcome in neuroleptic treatment - definitions
and concepts. In: Gaebel W, Awad AW, (editors)
Prediction of neuroleptic treatment outcome in schizophrenia. Wien; Springer 1994: pp 15-26
- 14 Insightful Corporation, S-PLUS® Version 3.3 (1995), 2000 (1999), and 6.1 (2002). 1995-2002
- 15 Kleinbaum D G. Logistic Regression - a self-learning text. New York; Springer 1994
- 16 Köpcke W. Design, methodological and statistical issues in prediction research
of neuroleptic response. In: Gaebel W, Awad AW, (editors)
Prediction of neuroleptic treatment outcome in schizophrenia. Wien; Springer 1994: pp 155-164
- 17
Liang K Y, Zeger S L.
Longitudinal data analysis using generalized linear models.
Biometrika.
1996;
73
13-22
- 18 Mancl L A. GEEPLUS SAS Macro for regression modelling of correlated and longitudinal
data. Technical Report 9503. University of Washington, Dental Public Health Sciences
1995
- 19
McCulloch W, Pitts W.
A logical calculus of the ideas immanent in nervous activity.
Bull Math Biophys.
1943;
5
115-133
- 20
Papadourakis G, Vourkas M, Micheloyannis S, Jervis B.
Use of artificial neural networks for clinical diagnosis.
Math Comput Simul.
1996;
40
623-635
- 21
Pickels A.
Psychiatric epidemiology.
Stat Meth Med Res.
1998;
7
235-251
- 22
Pietzcker A, Gaebel W, Köpcke W, Linden M, Müller P, Müller-Spahn F, Tegeler J.
Intermittent vs. maintenance neuroleptic long-term treatment in schizophrenia - Two-years
results of a German multicenter study.
J Psychiatr Res.
1993;
27
321-339
- 23
Politi E, Balduzzi C, Bussi R, Bellodi L.
Artificial neural networks: a study in clinical psychopharmacology.
Psychiatry Res.
1999;
87
203-215
- 24
Ravdin P M, Clark G M.
A practical application of neural network analysis for predicting outcome of individual
breast cancer patients.
Breast Cancer Res Treat.
1992;
22
285-293
- 25 Reed R D, Marks R J. Neural Smithing - Supervised Learning in Feedforward Artificial
Neural Networks. Boston; MIT Press 2002
- 26 Ripley B D. Pattern recognition and neural networks. Cambridge; Cambridge University
Press 1996
- 27 Rojas R. Neural Networks - A Systematic Introduction. Berlin, New-York; Springer
Verlag 1996
- 28 SA S. Institute Inc., Statistical Analysis System SAS®, release 6.10 (1996), 6.12
(1998), and 8.2 (2002). 1996-2002
- 29
Schwarz G, Vach W, Schuhmacher M.
On the misuses of artificial neural networks for prognostic and diagnostic classification
in oncology.
Stat Med.
2000;
19
541-561
- 30
Seuchter S A, Eisenacher M, Riesbeck M, Gaebel W, Köpcke W.
Methods for predictor analysis of repeated measurements: Appplication to psychiatric
data.
Methods Inf Med.
2004;
43 (2)
184-191
- 31
Simonoff E, Pickels A, Meyer J, Silberg J.
Epidemiology of child psychopathology in the Virginia Twin study of adolescent behavioural
development: influence of age, gender and impairment on rates of disorder.
Arch Gen Psychiatry.
1997;
54
801-808
- 32 Statsoft I nc. Statistica Neural Networks®, release 4.0F. 2000
- 33 Thernau T M. Extending the Cox model. In: Lin DY, Fleming TR, (editors)
Proceedings of the first Seattle symposium in biostatistics: Survival analysis. New York; Springer 1997: pp 51-84
- 34
Uitti R J, Ahlskog J E, Maraganore D M, Muenter M D, Atkinson E J, Cha R H, O’Brian P C.
(1993). Levodopa therapy and survival in idiopathic Parkinson’s disease: Olmsted County
Project.
Neurology.
1993;
43
1918-1926
- 35
Ziegler A, Kastner C, Blettner M.
The Generalized Estimating Equations.
An Annotated Bibliography Biometrical Journal.
1998;
40
115-139
Prof. Dr. Wolfgang Köpcke
Department of Medical Informatics and Biomathematics
University Clinic Münster
Domagkstr. 9
48129 Münster
Germany
Email: kopcke@uni-muenster.de