Zusammenfassung
Eine pulmonale Hypertonie, d. h. eine Erhöhung des mittleren Pulmonalarteriendruckes
in Ruhe über einen Wert von 20 mm Hg, kann bei verschiedenen Formen schlafbezogener
Atmungsstörungen beobachtet werden. Bei der obstruktiven Schlaf-Apnoe (OSA) bewirken
die Apnoe-assoziierten Trigger von Hypoxie und intrathorakalen Druckschwankungen repetitive
Anstiege der pulmonalarteriellen Drucke im Schlaf. Bei 20 - 30 % der OSA-Patienten
ist auch am Tage eine pulmonalarterielle Hypertonie vorhanden. Diese ist meistens
nur gering ausgeprägt und führt nur selten zum klinisch manifesten Cor pulmonale.
Eine effektive CPAP-Therapie besitzt einen günstigen Einfluss auf die pulmonale Hypertonie
bei OSA. Bei der schweren Linksherzinsuffizienz (LVEF < 40 %) kann es im Rahmen einer
pulmonalvenösen Hypertonie zur Stimulation von pulmonalen „stretch” und „irritant”-Rezeptoren
kommen. Die nachfolgende Hyperventilation führt zum Absinken der pCO2-Werte unter die Apnoe-Schwelle und damit zur Entstehung einer Cheyne-Stokes-Atmung
(CSR) bei bis zur Hälfte dieser Patienten. Bei Patienten mit fortgeschrittener idiopathischer
pulmonalarterieller Hypertonie (IPAH) kann ein der CSR ähnliches pathologisches Atemmuster
im Schlaf beobachtet werden. Pathogenetische Faktoren dieser periodischen Atmung sind
wahrscheinlich ebenfalls verlängerte Zirkulationszeiten und Hypokapnie. Zusammenfassend
können schlafbezogene Atmungsstörungen einerseits Ursache einer pulmonalen Hypertonie
sein (OSA-assoziierte pulmonale Hypertonie), andererseits kann eine pulmonale Hypertonie
jedoch auch selbst zur Entstehung schlafbezogener Atmungsstörungen führen (CSR bei
Linksherzinsuffizienz, periodische Atmung bei IPAH).
Abstract
Pulmonary hypertension (PH), i. e. an increase of mean pulmonary artery pressure above
20 mm Hg under resting conditions, can be observed in different forms of sleep-disordered
breathing (SDB). In obstructive sleep apnea (OSA) the apnea-associated triggers of
hypoxia and intrathoracic pressure swings lead to repetitive rises of pulmonary artery
pressure during sleep. In 20 - 30 % of these patients daytime PH occurs. PH in the
setting of OSA is usually mild and rarely causes clinically evident cor pulmonale.
Effective CPAP therapy has a beneficial influence on pulmonary hemodynamics in OSA.
Severe congestive heart failure (i. e. with a LVEF < 40 %) might provoke pulmonary
venous hypertension and thereby stimulation of pulmonary stretch and irritant receptors.
The ensuing hyperventilation leads to a decrease of pCO2 levels below the apneic threshold and thus contributes to the emergence of Cheyne
Stokes respiration (CSR) in up to one half of the affected patients. Patients suffering
from advanced idiopathic pulmonary arterial hypertension (IPAH) might show a similar
breathing pattern while asleep. Possible pathogenetic factors of the nocturnal periodic
breathing occurring in end-stage IPAH are prolonged circulation times and hypocapnia.
In conclusion, SDB might cause PH (OSA-associated PH). On the other hand, PH might
lead to the development of SDB (CSR in congestive heart failure, periodic breathing
in IPAH).
Literatur
- 1
Atwood C W, McCrory D, Garcia J GN. et al .
Pulmonary hypertension and sleep-disordered breathing (ACCP evidence-based clinical
practice guidelines).
Chest.
2004;
126
72S-77S
- 2
Steiner St, Perings Ch.
Pulmonalarterielle Hypertonie und Cor pulmonale bei obstruktiver Schlaf-Apnoe - Pathophysiologie
und klinische Relevanz.
Internist.
1999;
40
739-746
- 3
Steiner St, Strauer B E.
Funktionelle Dynamik des rechten Ventrikels und des Lungenkreislaufes bei obstruktiver
Schlaf-Apnoe - Therapeutische Konsequenzen.
Internist.
2004;
45
1101-1107
- 4
Marrone O, Bonsignore M R, Romano S. et al .
Slow and fast changes in transmural pulmonary artery pressure in obstructive sleep
apnoea.
Eur Respir J.
1994;
7
2192-2198
- 5
Schäfer H, Hasper E, Ewig S. et al .
Pulmonary haemodynamics in obstructive sleep apnoea: time course and associated factors.
Eur Respir J.
1998;
12
679-684
- 6
Podszus T, Bauer W, Mayer J. et al .
Sleep apnea and pulmonary hypertension.
Klin Wochenschr.
1986;
64
131-134
- 7
Weitzenblum E, Krieger J, Apprill M. et al .
Daytime pulmonary hypertension in patients with obstructive sleep apnea syndrome.
Am Rev Respir Dis.
1988;
138
345-349
- 8
Krieger J, Sforza E, Apprill M. et al .
Pulmonary hypertension, hypoxemia, and hypercapnia in obstructive sleep apnea patients.
Chest.
1989;
96
729-737
- 9
Laks L, Lehrhaft B, Grunstein R R. et al .
Pulmonary hypertension in obstructive sleep apnoea.
Eur Respir J.
1995;
8
537-741
- 10
Chaouat A, Weitzenblum E, Krieger J. et al .
Pulmonary hemodynamics in the obstructive sleep apnea syndrome.
Chest.
1996;
109
380-386
- 11
Sanner B M, Doberauer C, Konermann M. et al .
Pulmonary hypertension in patients with obstructive sleep apnea syndrome.
Arch Intern Med.
1997;
157
2483-2487
- 12
Sajkov D, Wang T, Saunders N A. et al .
Daytime pulmonary hemodynamics in patients with obstructive sleep apnea without lung
disease.
Am J Respir Crit Care Med.
1999;
159
1518-1526
- 13
Niijima M, Kimura H, Edo H. et al .
Manifestation of pulmonary hypertension during REM sleep in obstructive sleep apnea
syndrome.
Am J Respir Crit Care Med.
1999;
159
1766-1772
- 14
Bady E, Achkar A, Pascal S. et al .
Pulmonary arterial hypertension in patients with sleep apnoea syndrome.
Thorax.
2000;
55
934-939
- 15
Alchanatis M, Tourkohoriti G, Kakouros S. et al .
Daytime pulmonary hypertension in patients with obstructive sleep apnea: the effect
of continuous positive airway pressure on pulmonary hemodynamics.
Respiration.
2001;
68
566-572
- 16
Yamakawa H, Shiomi T, Sasanabe R. et al .
Pulmonary hypertension in patients with severe obstructive sleep apnea.
Psychiatry Clin Neurosci.
2002;
56
311-312
- 17
Sajkov D, Wang T, Saunders N A. et al .
Continuous positive airway pressure treatment improves pulmonary hemodynamics in patients
with obstructive sleep apnea.
Am J Respir Crit Care Med.
2002;
165
152-158
- 18
McGuire M, Bradford A.
Chronic intermittent hypercapnic hypoxia increases pulmonary arterial pressure and
haematocrit in rats.
Eur Respir J.
2001;
18
279-285
- 19
Fagan K A.
Physiological consequences of intermittent hypoxia: pulmonary hypertension in mice
following intermittent hypoxia.
J Appl Physiol.
2001;
90
1600-1605
- 20
Javaheri S, Parker T J, Wexler L. et al .
Occult sleep-disordered breathing in stable congestive heart failure.
Ann Intern Med.
1995;
122
487-492
- 21
Javaheri S, Parker T J, Liming J D. et al .
Sleep apnea in 81 ambulatory male patients with stable heart failure. Types and their
prevalences, consequences and presentations.
Circulation.
1998;
97
2154-2159
- 22
Pryor W W.
Cheyne-Stokes respiration in patients with cardiac enlargement and prolonged circulation
time.
Circulation.
1951;
14
233-238
- 23
Naughton M, Benard D, Tam A. et al .
Role of hyperventilation in the pathogenesis of central sleep apnea in patients with
congestive heart failure.
Am Rev Respir Dis.
1993;
148
330-338
- 24
Hanly P, Zuberi N, Gray R.
Pathogenesis of Cheyne-Stokes respiration in patients with congestive heart failure:
relationship to arterial PCO2.
Chest.
1993;
104
1079-1084
- 25
Traversi E, Callegari G, Bozzoli M. et al .
Sleep disorders and breathing alterations in patients with chronic heart failure.
G Ital Cardiol.
1997;
27
423-429
- 26
Fanfulla F, Mortara A, Maestri R. et al .
The development of hyperventilation in patients with chronic heart failure and Cheyne-Stokes
respiration.
Chest.
1998;
114
1083-1090
- 27
Mortara A, Sleight P, Pinna G D. et al .
Association between hemodynamic impairment and Cheyne-Stokes respiration and periodic
breathing in chronic stable congestive heart failure secondary to ischemic or idiopathic
dilated cardiomyopathy.
Am J Cardiol.
1999;
84
900-904
- 28
Solin P, Bergin P, Richardson M. et al .
Influence of pulmonary capillary wedge pressure on central apnea in heart failure.
Circulation.
1999;
99
1574-1579
- 29
El-Solh A A, Bozkanat E, Mador J. et al .
Association between plasma endothelin-1 levels and Cheyne-Stokes respiration in patients
with congestive heart failure.
Chest.
2002;
121
1928-1934
- 30
Lorenzi-Filho G, Azevedo E R, Parker J D. et al .
Relationship of carbon dioxide tension in arterial blood to pulmonary wedge pressure
in heart failure.
Eur Respir J.
2002;
19
37-40
- 31
Christ M, Grimm W, Rostig S. et al .
Association of right ventricular dysfunction and Cheyne-Stokes respiration in patients
with chronic heart failure.
J Sleep Res.
2003;
12
161-167
- 32 Olschewski H, Seeger W. Pulmonale Hypertonie. Bremen: UNI-MED Verlag 2000
- 33
Rafanan A L, Golish J A, Dinner D S. et al .
Nocturnal hypoxemia is common in primary pulmonary hypertension.
Chest.
2001;
120
894-899
- 34
Schulz R, Baseler G, Ghofrani H A. et al .
Nocturnal periodic breathing in primary pulmonary hypertension.
Eur Respir J.
2002;
19
658-663
- 35
Schulz R, Fegbeutel C, Olschewski H. et al .
Reversal of nocturnal periodic breathing in primary pulmonary hypertension after lung
transplantation.
Chest.
2004;
125
344-347
- 36
Hanly P, Milar T W, Steljes D G. et al .
The effect of oxygen on respiration and sleep in patients with congestive heart failure.
Ann Intern Med.
1989;
111
777-782
- 37
Andreas S, Clemens C, Sandholzer H. et al .
Improvement of exercise capacity with treatment of Cheyne-Stokes respiration in patients
with congestive heart failure.
J Am Coll Cardiol.
1996;
27
1486-1490
- 38
Braver H M, Brandes W C, Kubiet M A. et al .
Effect of cardiac transplantation on Cheyne-Stokes respiration occurring during sleep.
Am J Cardiol.
1995;
76
632-634
- 39
Rich S, Dantzker D R, Ayres S M. et al .
Primary pulmonary hypertension. A national prospective study.
Ann Intern Med.
1987;
107
216-223
Priv. Doz. Dr. med. Richard Schulz
Medizinische Klinik II/Schlaflabor · Justus-Liebig-Universität
Paul-Meimberg-Str. 5
35392 Gießen
eMail: Richard.Schulz @ innere.med.uni-giessen.de