Semin Respir Crit Care Med 2004; 25(3): 345-352
DOI: 10.1055/s-2004-829506
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Vaccination against Tuberculosis: Current Status and Future Promise

Stefan H. E. Kaufmann1 , Hans-Willi Mittrücker1
  • 1Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
Further Information

Publication History

Publication Date:
29 June 2004 (online)

Tuberculosis remains a major health threat. The currently available vaccine, bacille Calmette-Guérin (BCG), provides insufficient protection, and multi-drug-resistant strains are on the rise. A novel vaccine with higher efficacy is needed for satisfactory control of the disease. Currently, several novel vaccine candidates are being tested in preclinical models with promising outcome, but none with overwhelming success. The final decision as to whether an efficacious vaccine can be designed will have to await the outcome of a clinical trial comprising the most promising candidates identified by experimental animal studies.

REFERENCES

  • 1 Collins H L, Kaufmann S HE. Prospects for better tubercolosis vaccines.  Lancet Infect Dis. 2001;  1 21-28
  • 2 Kaufmann S HE. How can immunology contribute to the control of tubercolosis?.  Nat Rev Immunol. 2001;  1 20-30
  • 3 Fine P EM. The BCG story: lessons from the past and implications for the future.  Rev Infect Dis. 1989;  11 S353-S359
  • 4 Kaufmann S HE. Is the development of a new tuberculosis vaccine possible?.  Nat Med. 2000;  6 955-960
  • 5 Casadevall A, Pirofski L A. Exploiting the redundancy in the immune system: vaccines can mediate protection by eliciting “unnatural” immunity.  J Exp Med. 2003;  197 1401-1404
  • 6 Van Rie A, Warren R, Richardson M et al.. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment.  N Engl J Med. 1999;  341 1174-1179
  • 7 Casanova J-L, Abel L. Genetic dissection of immunity to mycobacteria: the human model.  Annu Rev Immunol. 2002;  20 581-620
  • 8 Clements C J. Vaccination: the current status of BCG. In: Kaufmann SHE, Hahn H Mycobacteria and TB. Basel; Karger 2003: 46-66
  • 9 Reiter H. Die Säuglingstuberkulose in Lübeck. Berlin; Julius Springer 1935
  • 10 Colditz G A, Brewer T F, Berkey C S et al.. Efficacy of BCG vaccine in the prevention of tuberculosis: meta-analysis of the published literature.  JAMA. 1994;  271 698-702
  • 11 Stanford J L, Shield M J, Rook G AW. How environmental mycobacteria may pre-determine the protective efficacy of BCG.  Tubercle. 1981;  62 55-62
  • 12 Palmer C E, Long M W. Effects of infection with atypical mycobacteria on BCG vaccination and tuberculosis.  Am Rev Resp Dis. 1966;  94 553
  • 13 Brandt L, Feino Cunha J, Weinreich Olsen A et al.. Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis.  Infect Immun. 2002;  70 672-678
  • 14 Schaible U E, Collins H L, Kaufmann S HE. Confrontation between intracellular bacteria and the immune system.  Adv Immunol. 1999;  71 267-377
  • 15 Janeway Jr C A, Medzhitov R. Innate immune recognition.  Annu Rev Immunol. 2002;  20 197-216
  • 16 Brightbill H D, Libraty D H, Krutzik S R et al.. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors.  Science. 1999;  285 732-736
  • 17 Kaufmann S HE. Protection against tuberculosis: cytokines, T cells, and macrophages.  Ann Rheum Dis. 2002;  61 54-58
  • 18 Geijtenbeek T BH, van Vliet S J, Koppel E A et al.. Mycobacteria target DC-SIGN to suppress dendritic cell function.  J Exp Med. 2002;  197 7-17
  • 19 Tailleux L, Schwartz O, Herrmann J L et al.. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells.  J Exp Med. 2002;  197 121-127
  • 20 Kaufmann S HE, Schaible U E. A dangerous liaison between the two major killers: M. tuberculosis and HIV target in dendritic cells through DC-SIGN.  J Exp Med. 2003;  197 1-5
  • 21 Raupach B, Kaufmann S HE. Immune response to intracellular bacteria.  Curr Opin Immunol. 2001;  13 417-428
  • 22 Schaible U E, Winau F, Sieling P A et al.. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis.  Nat Med. 2003;  9 1039-1046
  • 23 Pancholi P, Mirza A, Bhardwaj N, Steinman R M. Sequestration from immune CD4+ T-cells of mycobacteria growing in human macrophages.  Science. 1993;  260 984-986
  • 24 Kaufmann S HE. Gamma/delta and other unconventional T lymphocytes: what do they see and what do they do?.  Proc Natl Acad Sci USA. 1996;  93 2272-2279
  • 25 Schaible U E, Kaufmann S HE. CD1 and CD1-restricted T cells in infections with intracellular bacteria.  Trends Microbiol. 2000;  8 419-425
  • 26 Shen Y, Zhou D J, Qiu L Y et al.. Adaptive immune response of Vγ2 Vδ2 T cells during mycobacterial infections.  Science. 2002;  295 2255-2258
  • 27 Brandt L, Elhay M, Rosenkrands I, Lindblad E B, Andersen P. ESAT-6 subunit vaccination against Mycobacterium tuberculosis .  Infect Immun. 2000;  68 791-795
  • 28 Horwitz M A, Harth G, Dillon B J, Maslesa-Galic S. Recombinant bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model.  Proc Natl Acad Sci USA. 2000;  97 13853-13858
  • 29 Olsen A W, van Pinxteren L AH, Okkels L M, Rasmussen P B, Andersen P. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85B and ESAT-6.  Infect Immun. 2001;  69 2773-2778
  • 30 Jungblut P R, Schaible U E, Mollenkopf H J et al.. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens.  Mol Microbiol. 1999;  33 1103-1117
  • 31 Domenech P, Barry C E, Cole S T. Mycobacterium tuberculosis in the postgenomic age.  Curr Opin Microbiol. 2001;  4 28-34
  • 32 Skeiky Y AW, Ovendale P J, Jen S et al.. T cell expression cloning of a Mycobacterium tuberculosis gene encoding a protective antigen associated with the early control infection.  J Immunol. 2000;  165 7140-7149
  • 33 Tascon R E, Colston M J, Ragno S, Stavropoulos E, Gregory D, Lowrie D B. Vaccination against tuberculosis by DNA injection.  Nat Med. 1996;  2 888-892
  • 34 Huygen K, Content J, Denis O et al.. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine.  Nat Med. 1996;  2 893-898
  • 35 Behr M A, Wilson M A, Gill W P et al.. Comparative genomics of BCG vaccines by whole-genome DNA microarray.  Science. 1999;  284 1520-1523
  • 36 Berthet F X, Lagranderie M, Gounon P et al.. Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene.  Science. 1998;  282 759-762
  • 37 Yuan Y, Crane D D, Simpson R M et al.. The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages.  Proc Natl Acad Sci USA. 1998;  95 9578-9583
  • 38 McKinney J D, zu Bentrup K H, Munoz-Elias E J et al.. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase.  Nature. 2000;  406 735-738
  • 39 Cox J S, Chen B, McNeil M, Jacobs W R. Complex lipid determine tissue specific replication of Mycobacterium tuberculosis in mice.  Nature. 1999;  402 79-83
  • 40 Guleria I, Teitelbaum R, McAdam R A, Kalpana G, Jacobs W R, Bloom B R. Auxotrophic vaccines for tuberculosis.  Nat Med. 1996;  2 334-337
  • 41 Smith D A, Parish T, Stoker N G, Bancroft G J. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates.  Infect Immun. 2001;  69 1142-1150
  • 42 Pym A S, Brodin P, Majlessi L et al.. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis.  Nat Med. 2003;  9 533-539
  • 43 Hess J, Miko D, Catic A, Lehmensiek V, Russell D G, Kaufmann S HE. Mycobacterium bovis bacille Calmette-Guerin strains secreting listeriolysin of Listeria monocytogenes.  Proc Natl Acad Sci USA. 1998;  95 5299-5304
  • 44 Murray P J, Aldovini A, Young R A. Manipulation and potentiation of antimycobacterial immunity using recombinant bacille Calmette-Guerin strains that secrete cytokines.  Proc Natl Acad Sci USA. 1996;  93 934-939
  • 45 Biet F, Kremer L, Wolowczuk I, Delacre M, Locht C. Mycobacterium bovis BCG producing interleukin-18 increases antigen-specific gamma interferon production in mice.  Infect Immun. 2002;  70 6549-6557
  • 46 McShane H, Brookes R, Gilbert S C, Hill A VS. Enhanced immunogenicity of CD4+ T-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis.  Infect Immun. 2001;  69 681-686
  • 47 Feng C G, Palendira U, Demangel C, Spratt J M, Malin A S, Britton W J. Priming by DNA immunization augments protective efficacy of Mycobacterium bovis bacille Calmette-Guerin against tuberculosis.  Infect Immun. 2001;  69 4174-4176
  • 48 Brooks J V, Frank A A, Keen M A, Bellisle J T, Orme I M. Boosting vaccine for tuberculosis.  Infect Immun. 2001;  69 2714-2717

Stefan H.E KaufmannPh.D. 

Max Planck Institute for Infection Biology, Department of Immunology

Schumannstrasse 21-22, D-10117 Berlin, Germany

Email: kaufmann@mpiib-berlin.mpg.de

    >