Osteosynthesis and Trauma Care 2004; 12(1): 20-24
DOI: 10.1055/s-2004-822598
Original Article

© Georg Thieme Verlag Stuttgart · New York

Hydroxyapatite Cement (HAC) to Repair Cortical Defects in Long Bones - An Animal Study

E. Schwendenwein1 , S. Hajdu1 , G. Kaltenecker1 , C. Gäbler1 , I. László2 , S. Lang3 , P. Roschger4 , R. Wintersteiger5 , V. Vécsei1
  • 1Department of Traumatology, University of Vienna Medical School, Vienna, Austria
  • 2Department of Orthopaedics and Traumatology, University of Targu-Mures Medical School, Targu-Mures, Romania
  • 3Clinical Institute of Clinical Pathology, University of Vienna Medical School, Vienna, Austria
  • 4Ludwig Boltzmann-Institute of Osteology in Hanusch Hospital and Trauma Centre Meidling, Vienna, Austria
  • 5Department of Pharmacy, University of Graz, Chemistry, Graz, Austria
Further Information

Publication History

Publication Date:
30 March 2004 (online)

Abstract

Hydroxyapatite cement (HAC) paste has already been used in animal experiments as well as in clinical studies on the cranial skeleton, i. e., on non-stressed bone, for the reconstruction of defects. The present experiment intended to provide information if HAC can be applied for treatment of defects in the stressed cortical region of long bones. For this purpose artificial defects were set on the ulnar diaphyses of six New Zealand rabbits and filled with HAC plugs. After set periods of time (postoperative, 8 days, 12 days, 4 weeks, 4 months) the results were clinically, radiologically, histologically and electron microscopically evaluated. No complications occurred in the animal study group. The results showed that HAC can be successfully applied as an excellent bio-compatible material to the stressed cortical region of long bones for the repair of stable bone defects. After four months bone tissue of full value was shown to be present when examined with both light and under electron microscopes. HAC was resorbed completely within this time period.

References

  • 1 Bauer T W, Geesink R CT, Zimmermann R, McMahon J T. Hydroxyapatite-coated femoral stems.  J Bone Joint Surg [Am]. 1991;  73 1439-1452
  • 2 Cook P D, Osborne B M, Connor R L, Strauss J F. Follicular lymphoma adjacent to foreign body granulomatous inflammation and fibrosis surrounding silicone breast prosthesis.  Am J Surg Pathol. 1995;  19 717
  • 3 Costantino P D, Friedman C D, Jones K, Chow L C, Pelzer H J, Sisson G A. Hydroxyapatite cement - I. Basic chemistry and histologic properties.  Arch Otolaryngol Head Neck Surg. 1991;  117 379-384
  • 4 Costantino P D, Friedman C D, Jones K, Chow L C, Sisson G A. Experimental hydroxyapatite cement cranioplasty.  Plast Reconstr Surg. 1992;  90 174-191
  • 5 Egloff D V, Varadi G, Narakas A, Simonetta C, Cantero C. Silastic implants of the scaphoid and lunate: a long-term clinical study with a mean follow-up of 13 years.  J Hand Surg [Br]. 1993;  18 687-692
  • 6 Fallopius G. Opera omnia Francofurti. Wecheli A (ed). 1600
  • 7 Friedman C D, Costantino P D, Jones K, Chow L C, Pelzer H J, Sisson G A. Hydroxyapatite cement - II. Obliteration and reconstruction of the cat frontal sinus.  Arch Otolaryngol Head Neck Surg. 1991;  117 385-389
  • 8 Furlong R J, Osborn J F. Fixation of hip prosthesis by hydroxyapatite ceramic coatings.  J Bone Joint Surg [Br]. 1991;  73 741-745
  • 9 Gage E L. Vitallium cranioplasty.  W V Med J. 1971;  67 325
  • 10 Goldstein J I, Newbury D E, Echlin P, Joy D C, Romig A D, Lyman C E, Fiori C, Lifshin E. Scanning electron microscopy and X-ray microanalysis. 2nd ed. Plenum Press, New York 1990; 87-106
  • 11 Goodman S B, Aspenberg P, Wang J S. Cement particles inhibit bone ingrowth into titanium chambers implanted in the rabbit tibia.  Acta Orthop Scand. 1993;  64 627
  • 12 Gordon D S, Blair G AS. Titanium cranioplasty.  BMJ. 1974;  2 478
  • 13 Hardy D CR, Frayssinet P, Guilhelm A, Lafontaine M A, Delince P E. Bonding of hydroxyapatite-coated femoral prosthesis: histopathology of specimens from four cases.  J Bone Joint Surg [Br]. 1991;  73 732-740
  • 14 Horowitz S M, Doty S B, Lane J M, Burstein A H. Studies of the mechanism by which the mechanical failure of polymethylmethacrylate leads to bone resorption.  J Bone Joint Surg [Am]. 1993;  75 802
  • 15 Kveton J F, Friedman C D, Peipmeier J M, Costantino P D. Reconstruction of suboccipital craniectomy defects with hydroxyapatite cement: a preliminary report.  Laryngoscope. 1995;  105 156-159
  • 16 Maistrelli G L, Mahomed N, Garbuz D, Fornasier V, Harrington I J, Binnington A. Hydroxyapatite coating on carbon composite hip implants in dogs.  J Bone Joint Surg [Br]. 1992;  74 452-456
  • 17 Maruyama M, Terayama K, Ito M, Takei T, Kitagawa E. Hydroxyapatite clay for gap filling and adequate bone ingrowth.  J Biomed Mater Res. 1995;  29 329-336
  • 18 Maruyama M, Ito M. In vitro properties of a chitosan-bonded self-hardening paste with hydroxyapatite granules.  J Biomed Mater Res. 1996;  32 527-532
  • 19 Maruyama M. In vivo properties of an intramedullary hydroxyapatite plug to improve femoral stem fixation.  Arch Orthop Trauma Surg. 1997;  116 396-399
  • 20 Murray D W, Rushton N. Macrophages stimulate bone resorption when they phagocytose particles.  J Bone Joint Surg [Br]. 1990;  72 988-992
  • 21 Oonishi H, Yamamoto M, Ishmaru H, Tsuji E, Kushitani S, Aono M, Ukon Y. The effect of hydroxyapatite coating on bone growth into porous titanium alloy implants.  J Bone Joint Surg [Br]. 1989;  71 213-216
  • 22 Pistner H, Reuther J, Reinhart E, Kübler N, Priessnitz B. Neuer Hydroxyapatitzement für die kraniofaciale Chirurgie.  Mund Kiefer Gesichts Chir. 1998;  2 (Suppl 1) 37-40
  • 23 Reid S A, Boyde A. Changes in the mineral density distribution in human bone with age: Image analysis using backscattered electrons in the SEM.  J Bone Miner Res. 1987;  2 13-22
  • 24 Roschger P, Plenk H, Klaushofer K, Eschberger J. A new scanning electron microscopy approach to the quantification of bone mineral distribution: Backscattered electron image grey-levels correlated to calcium Ka-line intensities.  Scan Microsc. 1995;  9 75-88
  • 25 Roschger O, Fratzl P, Eschberger J, Klaushofer K. Validation of quantitative backscattered electron imaging (qBEI) for the measurement of mineral density distribution on human bone biopsies.  Bone. 1998;  23 319-326
  • 26 Shindo M L, Costantino P D, Friedman C D, Chow L C. Facial skeletal augmentation using hydroxyapatite cement.  Arch Otolaryngol Head Neck Surg. 1993;  119 185-190
  • 27 Soballe K, Hansen E S, Brockstedt R H, Pedersen C M, Bunger C. Bone graft incorporation around titanium-alloy- and hydroxyapatite-coated implants in dogs.  Clin Orthop. 1992;  274 282-293
  • 28 Thomas K A, Cook S D, Haddad R J, Kay J F, Jarcho M. Biologic response to hydroxylapatite-coated titanium hips: a preliminary study in dogs.  J Arthroplasty. 1989;  4 43-53
  • 29 Wang J S, Goodman S, Aspenberg P. Bone fromation in the presence of phagocytosable hydroxyapatite particles.  Clin Orthop. 1994;  304 272-279

E. SchwendenweinM.D. 

Department of Traumatology

University of Vienna Medical School

Währinger Gürtel 18-20

1090 Vienna

Austria

Phone: +43/1-4 04 00-59 41

Fax: +43/1-4 04 00-59 39

Email: elisabeth.schwendenwein@akh-wien.ac.at

    >