Zusammenfassung
Voraussetzung für eine optimale Versorgung von Hörstörungen sind detaillierte Kenntnisse
über die Anatomie und Physiologie des Ohres und der Hörbahn, aber auch über Veränderungen
der physiologischen Prozesse beim Vorliegen von Hörstörungen unterschiedlicher Genese.
Der vorliegende Artikel versucht einige Aspekte der Physiologie und Pathophysiologie
der Hörwahrnehmung darzustellen. Dabei wird die Lautheitsempfindung aber auch die
Frequenzunterscheidung anhand modellhafter Vorstellungen, sowie anhand einer Auswahl
experimenteller Untersuchungen dargestellt. Einen Schwerpunkt des Artikels stellt
die Schilderung der Physiologie des binauralen Hörens dar, die in den letzten Jahren
im Zusammenhang mit der beidohrigen Versorgung mit apparativen Hörhilfen in den Fokus
des Interesses gelangt ist. Hierbei werden klassische Modelle des binauralen Hörens
wie auch aktuelle Forschungsergebnisse besprochen.
Abstract
Obtaining knowledge on the physiology of hearing is one of the major prerequisites
of the treatment of sensorineural hearing loss. This article gives a review on some
basic principles as well as recent research on the sensation of loudness, frequency
discrimination and the temporal processing of sound. Some principles of auditory processing
within the cochlear and in the central auditory system are shown in normal as well
as listeners with impaired hearing. As there has been increasing interest in binaural
hearing the physiological basis of directional hearing is discussed in more detail.
In particular the Jeffress model of binaural hearing as one of the classical models
of binaural hearing is shown as well as recent research work that emphasizes the role
of inhibitory innervation within the brainstem.
Schlüsselwörter
Lautheitsempfindung - Recruitment - Frequenzdifferenzierung - Richtungsgehör - Jeffress-Modell
Key words
hearing loss - loudness - frequency discrimination - critical bandwidth - binaural
hearing - directional hearing
Literatur
- 1
Kawamoto K, Ishimoto S, Minoda R, Brough D E, Raphael Y.
Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo.
J Neurosci.
2003;
23
395-400
- 2
Tateya I, Nakagawa T, Iguchi F, Kim T S, Endo T, Yamada S, Kageyama R, Naito Y, Ito J.
Fate of neural stem cells grafted into injured inner ears of mice.
Neuroreport.
2003;
14
677-81
- 3
Wright A, Davies A, Bredberg G, Ulehova L, Spencer H.
Hair cell distribution in the normal human cochlea.
Acta oto-laryngol..
444;
1987(suppl)
1-48
- 4
Spoendlin H, Schrott A.
Analysis of human auditory nerve.
Hear Res.
1989;
43
25-38
- 5
Sellick P M, Russell I J.
The responses of inner hair cells to basilar membrane velocity during low-frequency
auditory stimulation in the guinea pig.
Hear Res.
1980;
2
439-445
- 6
Zenner H P.
Aktive Bewegungen von Haarzellen: Ein neuer Mechanismus beim Hörvorgang.
HNO.
1986;
34
133-138
- 7
Plinkert P K, Zenner H P.
Les cellules ciliées externes sont-elles à l'origine des émissions oto-acoustiques?.
Rev Laryngol Otol Rhinol (Bord).
1990;
111
41-3
- 8
Fowler E P.
Measuring the sensation of loudness.
Arch Otolaryngol.
1937;
26
514-526
- 9
Stevens S S.
The relation of pitch to intensity.
JASA.
1935;
6
150-154
- 10
Moore B CJ.
Coding of sounds in the auditory system and its relevance to signal processing and
coding in cochlear implants.
Otol Neurootol.
2003;
24
243-254
- 11
Buus S, Florentine M.
Growth of loudness in listeners with cochlear hearing losses: recruitment reconsidered.
J Assoc Res Otolaryngol.
2002;
3
120-39
- 12
Kießling J.
Zum überschwelligen Lautheitsanstieg bei Schallempfindungsschwerhörigen-Konsequenz
für die Hörgeräteentwicklung und -Anpassung.
Audiol Akust.
1995;
34
82-89
- 13
Harrison R V.
Rate-versus -intensity functions and related AP responses in normal and pathological
guinea pig and human cochleas.
JASA.
1981;
70
1036-1044
- 14
Liberman M C, Dodds L W.
Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and
alterations of spontaneous discharge rates.
Hear Res.
1984;
16
43-53
- 15
Heinz M G, Young E D.
Response growth with sound level in auditory-nerve fibers after noise induced hearing
loss.
J Neurophysiol.
2004;
91
784-795
- 16
Moore B CJ, Glasberg B R.
A revised model of loudness perception applied to cochlear hearing loss.
Hear Res.
2004;
188
70-88
- 17
Young E D, Sachs M B.
Representation of steady state vowels in the temporal aspects of the discharge patterns
of populations of auditory nerve fibers.
JASA.
1979;
66
1381-1403
- 18
Langner G, Sams M, Heil P, Schulze H.
Frequency and periodicity are represented in orthogonal maps in the human auditory
cortex: evidence from magetencephalography.
J Com Physiol A.
1997;
181
65-676
- 19
Heil P, Neubauer H A.
unifying basis ogf auditory threshold based on temporal summation.
PNAS.
2003;
100
6151-6156
- 20 Kollmeier B. Wahrnehmungsgrundgrößen. In: Kießling J, Kollmeier B, Diller G
Versorgung und Rehabilitation mit Hörgeräten. Georg Thieme Verlag Stuttgart New York; 1997
- 21
Thompson S P.
On the function of the two ears in the perception of space.
Phil Mag.
1882;
13
406-416
- 22
Paulus E.
Die richtunggebenden Merkmale des räumlichen Hörens.
Laryngorhinootologie.
2003;
82
240-248
- 23 Blauert J. Räumliches Hören. S. Hirzel Verlag Stuttgart; 1974
- 24
Jeffress L A.
A place theory of sound localization.
J Comp Physiol.
1948;
44
35-39
- 25
Konishi M.
Study of sound localization by owls and its relevance to humans.
Comp Biochem Physiol A Mol Integr Physiol.
2000;
126
459-69
- 26
Blauert J, Lindemann W.
Spatial mapping of intracranial auditory events for various degrees of interaural
coherence.
JASA.
1986;
79
806-13
- 27
Toole F E, McSayers B A.
Lateralization judgments and the nature of binaural acoustic images.
JASA.
1965;
37
319-324
- 28
Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B.
Precise inhibition is essential for microsecond interaural time difference coding.
Nature.
2002;
417
543- 547
- 29
McAlpine D, Grothe B.
Sound localization and delay lines- do mammals fit the model?.
Trends Neurosci.
2003;
26
347-350
- 30 Gerstner W, Kempter R, van H emmen, JL L, Wagner H. A developmental learning rule
for coincidence tuning in the barn owl auditory system. In Bower, J. (Ed.)
Computational Neuroscience: trends in research. Plenum Press New York; 1997: p. 665-669
Gerstner
W
Kistler
W
M
Spiking neuron models. Single neurons, populations, plasticity
Cambridge University Press
2002
Dr. Wolfgang Delb
Universitäts-HNO-Klinik
Kirrbergerstr.
66421 Homburg/Saar
eMail: hnowdel@uniklinik-saarland.de