Semin Respir Crit Care Med 2003; 24(6): 737-748
DOI: 10.1055/s-2004-815669
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Macrolides as Biological Response Modifiers in Cystic Fibrosis and Bronchiectasis

Andrew Bush1,2 , Bruce K. Rubin3,4
  • 1Department of Pediatric Respirology, Imperial School of Medicine at National Heart and Lung Institute
  • 2Royal Brompton Hospital, London, United Kingdom
  • 3Department of Pediatrics, Wake Forest University Health Sciences, Winston-Salem, North Carolina
  • 4Department Biomedical Engineering, Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
Further Information

Publication History

Publication Date:
15 January 2004 (online)

ABSTRACT

For 50 years, macrolide antibiotics have been used to treat community acquired pneumonia and atypical infections such as Chlamydia pneumonia and Mycoplasma. In the late 1960s it was noted that when the 14-member ring macrolide antibiotic troleandomycin was given to asthma patients who required large doses of systemic corticosteroids, they could often reduce their steroid dose or even stop steroids completely without exacerbation of their asthma. Because of this experience, Prof. S. Kodoh and colleagues first used erythromycin as an immunomodulatory agent to treat diffuse panbronchiolitis (DPB). DPB is a cystic fibrosis (CF)-like condition seen predominantly in young, nonsmoking adults in Japan and Korea. The introduction of erythromycin profoundly improved survival, and in many of these very ill patients the illness disappeared. Since then, research has focused attention on many nonantibacterial, disease modifying effects of this class of compounds. These include downregulation of proinflammatory cytokines via an effect on nuclear transcription factors, reduction in adhesion molecule expression, suppression of inducible nitric oxide synthase (iNOS), reduced neutrophil chemotaxis and degranulation, inhibition of neutrophil elastase, cytoprotection against bioactive phospholipids, improvement in the rheological properties of mucus, reduction in bronchial hyperreactivity, and, perhaps, modulation of neutrophil death by apoptosis pathways, and in the end, airway remodeling. Additionally, they have unconventional effects on microorganisms, including inhibiting Pseudomonas aeruginosa twitching motility and thus biofilm formation. There are small case series and three large randomized controlled trials that have established unequivocal evidence of benefit in CF. There is less evidence for an immunomodulatory effect in bronchiectasis. Future work is likely to focus on the development of macrolides with disease-specific modes of action.

REFERENCES

  • 1 Eigen H, Rosenstein B, Fitzsimmons S, Schidlow D. A multi-center study of alternate day prednisolone therapy in patients with cystic fibrosis.  J Pediatr . 1995;  126 515-523
  • 2 Balfour-Lynn I M, Klein N J, Dinwiddie R. Randomised controlled trial of inhaled corticosteroids (fluticasone propionate) in cystic fibrosis.  Arch Dis Child . 1997;  77 124-130
  • 3 Bisgaard H, Pedersen S S, Nielsen K G. et al . Controlled trial of inhaled budesonide in patients with cystic fibrosis and chronic bronchopulmonary Pseudomonas aeruginosa infection.  Am J Respir Crit Care Med . 1997;  156 1190-1196
  • 4 Konstan M W, Byard P J, Hoppel C L, Davis P B. Effect of high-dose ibuprofen in patients with cystic fibrosis.  N Engl J Med . 1995;  322 848-854
  • 5 Birrer P, McElvaney N G, Rudeberg C. et al . Protease-antiprotease imbalance in the lungs of children with cystic fibrosis.  Am J Respir Crit Care Med . 1994;  150 207-213
  • 6 Bonfield T L, Konstan M, Burfeind P, Panuska J R, Hilliard J B, Berger M. Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is down-regulated in cystic fibrosis.  Am J Respir Cell Mol Biol . 1995;  13 257-261
  • 7 Khan T Z, Wagener J S, Boat T, Martinez J, Accurso F J, Riches D W. Early pulmonary inflammation in patients with cystic fibrosis.  Am J Respir Crit Care Med . 1995;  151 1075-1082
  • 8 Konstan M W, Berger M. Current understanding of the inflammatory process in cystic fibrosis: onset and aetiology.  Pediatr Pulmonol . 1997;  24 137-142
  • 9 Armstrong D S, Grimwood K, Carlin J B. et al . Lower airway inflammation in infants and young children with cystic fibrosis.  Am J Respir Crit Care Med . 1997;  156 1197-1204
  • 10 Muhlebach M S, Stewart P W, Leigh M W, Noah T L. Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients.  Am J Respir Crit Care Med . 1999;  160 186-191
  • 11 Scheid P, Kempster L, Griesenbach U. et al . Inflammation in cystic fibrosis airways: relationship to increased bacterial adherence.  Eur Respir J . 2001;  17 27-35
  • 12 Nagai H, Shishido H, Yoneda R, Yamaguchi E, Tamura A, Kurashima A. Long-term, low-dose administration of erythromycin to patients with diffuse panbronchiolitis.  Respiration . 1991;  58 145-149
  • 13 Fujii T, Kadota J, Kawakami K. et al . Long-term effects of erythromycin therapy in patients with chronic Pseudomonas aeruginosa infection.  Thorax . 1995;  50 1246-1252
  • 14 Kudoh S, Azuma A, Yamamoto M, Izumi T, Ando M. Improvement in survival of patients with diffuse panbronchiolitis treated with low dose erythromycin.  Am J Respir Crit Care Med . 1998;  157 1829-1832
  • 15 Høiby N. Diffuse panbronchiolitis and cystic fibrosis: East meets West.  Thorax . 1994;  49 531-532
  • 16 Oda H, Kadota J, Kohno S, Hara K. Erythromycin inhibits neutrophil chemotaxis in bronchoalveolar lavage in diffuse panbronchiolitis.  Chest . 1994;  106 1116-1123
  • 17 Rubin B K, Tamaoki J. Macrolide antibiotics as biological response modifiers.  Curr Opin Invest Drugs . 2000;  1 169-172
  • 18 Jaffe A, Bush A. Anti-inflammatory effects of macrolides in lung disease.  Pediatr Pulmonol . 2001;  31 464-473
  • 19 Culic O, Erakovic V, Parnham M J. Anti-inflammatory effects of macrolide antibiotics.  Eur J Pharmacol . 2001;  429 209-229
  • 20 Dumont F J. FK506, an immunosuppressant targeting calcineurin function.  Curr Med Chem . 2000;  7 731-748
  • 21 Mazzei T, Mini E, Novelli A, Perti P. Chemistry and mode of action of macrolides.  J Antimicrob Chemother . 1993;  31 (suppl C) S1-S9
  • 22 Wu Y J. Highlights of semi-synthetic developments from erythromycin A.  Curr Pharm Des . 2000;  6 181-223
  • 23 Omura S. Macrolide Antibiotics: Chemistry, Biology, and Practice. San Diego: Elsevier Science 2002
  • 24 Bearden D T, Rodvold K A. Penetration of macrolides into pulmonary sites of infection.  Infect Med . 1999;  16 480-484
  • 25 Miossec-Bartoli C, Pilatre L, Peyron P. et al . The new ketolide HMR3647 accumulates in the azurophil granule of human polymorhonuclear cells.  Antimicrob Agents Chemother . 1999;  43 2457-2462
  • 26 Vazifeh D, Abdelghaffar H, Labro M T. Cellular accumulation of the new ketolides RU64004 by human neutrophils: comparison with that of azithromycin and roxithromycin.  Antimicrob Agents Chemother . 1997;  41 2099-2107
  • 27 McDonald P J, Pruul H. Phagocyte uptake and transport of azithromycin.  Eur J Clin Microbiol Infect Dis . 1991;  10 828-833
  • 28 Sakito O, Kadota J, Kohno S. et al . Interleukin-1, tumor necrosis factor-alpha, and interleukin-8 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis: a potential mechanism for macrolide therapy.  Respiration . 1996;  63 42-48
  • 29 Khair O A, Devalia J L, Abdelaziz M M, Sapsford R J, Davies R J. Effect of erythromycin on Haemophilus influenzae endotoxin-induced release of IL-6, IL-8 and sICAM-1 by cultured human bronchial epithelial cells in vitro.  Eur Respir J . 1995;  8 1451-1457
  • 30 Kawasaki S, Takizawa H, Ohtushi T. et al . Roxithromycin inhibits cytokine production by and neutrophil attachment to human bronchial epithelial cells in vitro.  Antimicrob Agents Chemother . 1998;  42 1499-1502
  • 31 Ashitani J, Mukae H, Nakazato M. et al . Elevated concentrations of defensins in bronchoalveolar lavage fluid in serum of patients with diffuse panbronchiolitis.  Eur Respir J . 1998;  11 104-111
  • 32 Mukae H, Kadota J, Ashitani J. et al . Elevated levels of soluble adhesion molecules in serum of patients with diffuse panbronchiolitis.  Chest . 1997;  112 1615-1621
  • 33 Takizawa H, Desaki M, Ohtoshi T. et al . Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells.  Am J Respir Crit Care Med . 1997;  156 266-271
  • 34 Desaki M, Takizawa H, Ohtoshi T. et al . Erythromycin suppresses nuclear factor-κβ and activator protein-1 in human bronchial epiuthelial cells.  Biochem Biophys Res Commun . 2000;  267 124-128
  • 35 Aoki Y, Kao P N. Erythromycin inhibits transcriptional activation of NF-κB, but not NFAT, through calcineurin-independent signalling in T-cells.  Antimicrob Agents Chemother . 1999;  43 2678-2684
  • 36 Abe S, Nakamura H, Inoue S. et al . Interleukin-8 gene repression by clarithromycin is mediated by activator protein-1 binding site in human bronchial epithelial cells.  Am J Respir Cell Mol Biol . 2000;  22 51-60
  • 37 Iino T, Toriyama M, Kudo K, Natori Y, You A. Erythromycin inhibition of lipopolysaccharide-stimulated tumor necrosis factor alpha production by human monocytes in vitro.  Ann Otol Rhinol Laryngol . 1992;  157(suppl) 16-20
  • 38 Schultz M J, Speelman P, Zaat S, van Deventer J S, van der Poll T. Erythromycin inhibits tumor necrosis alpha and interleukin-6 production induced by heat-killed Streptococcus pneumoniae in whole blood.  Antimicrob Agents Chemother . 1998;  42 1605-1609
  • 39 Kohyama T, Takizawa H, Kawasaki S. et al . Fourteen-membered macrolides inhibit interleukin-8 release by human eosinophils from atopic donors.  Antimicrob Agents Chemother . 1999;  43 907-911
  • 40 Sato E, Nelson D K, Koyama S, Hoyt J C, Robbins R A. Erythromycin modulates eosinophil chemotactic cytokine production by human lung fibroblasts in vitro.  Antimicrob Agents Chemother . 2001;  45 401-406
  • 41 Shimane T, Asano K, Suzuki M, Hisamitsu T, Suzaki H. Influence of a macrolide antibiotic, roxithromycin, on mast cell growth and activation in vitro.  Mediators Inflamm . 2001;  10 323-332
  • 42 Khan A A, Silfer T R, Araujo G, Remington J S. Effects of clarithromycin and azithromycin on production of cytokines by human monoocytes.  Int J Antimicrob Agents . 1999;  11 121-132
  • 43 Schultz M J, Speelman P, Hack C E. et al . Intravenous infusion of erythromycin inhibits CXC chemokine production, but augments neutrophil degranulation in whole blood stimulated with Streptococcus pneumoniae J Antimicrob Chemother .  2000;  46 235-240
  • 44 Lin H C, Wang C H, Liu C Y, Yu C T, Kuo H P. Erythromycin inhibits beta2 integrins (CD11b/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils.  Respir Med . 2000;  94 654-660
  • 45 Matsuoka N, Eguchi K, Kawakami A. et al . Inhibitory effect of clarithromycin on costimulatory molecule expression and cytokine production by synovial fibroblast-like cells.  Clin Exp Immunol . 1996;  104 501-508
  • 46 Mitsuyama T, Hidaka K, Furono T, Hara N. Neutrophil-induced endothelial cell damage: inhibition by a 14-membered ring macrolide through the action of nitric oxide.  Int Arch Allergy Immunol . 1997;  114 111-115
  • 47 Tamaoki J, Kondo M, Kohri K. et al . Macrolide antibiotics protect against immune complex-induced lung injury in rats: role of nitric oxide from alveolar macrophages.  J Immunol . 1999;  163 2909-2915
  • 48 Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbachs-Mecarelli L. Neutrophils: molecules, functions, and pathophysiological aspects.  Lab Invest . 2000;  80 617-653
  • 49 Hojo M, Fujita I, Mamasaki M, Miyazaki S. Erythromycin does not affect neutrophil functions.  Chest . 1994;  106 1116-1123
  • 50 Torre D, Broggini M, Botta V. et al . In vitro and ex vivo effects of recent and new macrolide antibiotics on chemotaxis of human polymorphonuclear leukocytes.  J Chemother . 1991;  3 236-239
  • 51 Labro M T, el Benna J, Babin-Chevaye C. Comparison of the in vitro effect of several macrolides on the oxidative burst of human neutrophils.  J Antimicrob Chemother . 1989;  24 561-572
  • 52 Villagrasa V, Berto L, Cortijo J. et al . Effects of erythromycin on chemoattractant-activated human polymorphonuclear leukocytes.  Gen Pharmacol . 1997;  29 605-609
  • 53 Hand W L, Hand D L, King-Thompson N L. Antibiotic inhibition of the respiratory burst in human polymorphonuclear leucocytes.  Antimicrob Agents Chemother . 1990;  34 863-870
  • 54 Aoshiba K, Nagai A, Konno K. Erythromycin shortens neutrophil survival by accelerating apoptosis.  Antimicrob Agents Chemother . 1995;  39 872-877
  • 55 Brennan S, Cooper D, Sly P D. Directed neutrophil migration to IL-8 is increased in cystic fibrosis: a study of the effect of erythromycin.  Thorax . 2001;  56 62-64
  • 56 Andersen R, Fernandes A C, Eftychis H E. Studies on the ingestion of a single 500 mg oral dose of erythromycin stearate on leucocyte motility and transformation and on release in vitro of prostaglandin E2 by stimulated leucocytes.  J Antimicrob Chemother . 1984;  14 41-50
  • 57 Andersen R. Erythromycin and roxithromycin potentiate human neutrophil locomotion in vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation.  J Infect Dis . 1989;  159 966-973
  • 58 Gorrini M, Lupi A, Viglio S. et al . Inhibition of human neutrophil elastase by erythromycin and flurythromycin, two macrolide antibiotics.  Am J Respir Cell Mol Biol . 2001;  25 492-499
  • 59 Jones A, Elphick H, Pettitt E, Everard M L, Evans G S. Colistin stimulates the activity of neutrophil elastase and Pseudomonas aeruginosa elastase.  Eur Respir J . 2002;  19 1136-1141
  • 60 Feldman C, Anderson R, Theron A J. et al . Roxithromycin, clarithromycin, and azithromycin attenuate the injurious effects of bioactive phospholipids on human respiratory epithelium in vitro.  Inflammation . 1997;  21 655-665
  • 61 Feldman C, Anderson R, Theron A. et al . The effects of ketolides on bioactive phospholipid-induced injury to human respiratory epithelium in vitro.  Eur Respir J . 1999;  13 1022-1028
  • 62 Okamoto K, Kishioka C, Kim J S. et al . Erythromycin inhibits mucin secretion in the inflamed trachea.  Am J Respir Crit Care Med . 1999;  159 A35
  • 63 Tamaoki J, Takeyama K, Tagaya E, Konno K. Effect of clarithromycin on sputum production and its rheological properties in chronic respiratory infections.  Antimicrob Agents Chemother . 1995;  39 1688-1690
  • 64 Rubin B K, Druce H, Ramirez O E, Palmer R. Effect of clarithromycin on nasal mucus properties in healthy subjects and in patients with purulent rhinitis.  Am J Respir Crit Care Med . 1997;  155 2018-2023
  • 65 Rubin B K. A superficial view of mucus and the cystic fibrosis defect.  Pediatr Pulmonol . 1992;  13 4-5
  • 66 Shibuya Y, Wills P J, Cole P J. The effect of erythromycin on mucociliary transportability and rheology of cystic fibrosis and bronchiectasis sputum.  Respiration . 2001;  68 615-619
  • 67 Miyatake H, Taki F, Taniguchi H. et al . Erythromycin reduces the severity of bronchial hyperresponsiveness in asthma.  Chest . 1991;  99 670-673
  • 68 Takizawa H, Desaki M, Ohtoshi T. et al . Erythromycin and clarithromycin attenuate cytokine-induced endothelin-1 expression in human bronchial epithelial cells.  Eur Respir J . 1998;  12 57-63
  • 69 Tamaoki J, Tagaya E, Sakai A, Konno K. Effect of macrolide antibiotics on neurally mediated contraction of human isolated bronchus.  J Allergy Clin Immunol . 1995;  95 853-859
  • 70 Yatsunami J, Fukuno Y, Nagata M. et al . Antiangiogenic and antitumor effects of 14-membered macrolides on mouse B16 melanoma cells.  Clin Exp Metastasis . 1999;  17 361-367
  • 71 Yatsunami J, Tsuruta N, Hara N, Hayashi S. Inhibition of tumour angiogenesis by roxithromycin, a 14-membered ring macrolide antibiotic.  Cancer Lett . 1998;  131 137-143
  • 72 Oyama T, Sakuta T, Matsushita K. et al . Effects of roxithromycin on tumor necrosis factor-alpha-induced vascular endothelial growth factor expression in human periodontal ligament cells in culture.  J Periodontol . 2000;  71 1546-1553
  • 73 Kitadai Y, Takahashi Y, Haruma K. et al . Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice.  Br J Cancer . 1999;  81 647-653
  • 74 Yatsunami J, Tsuruta N, Ogata K. et al . Interleukin-8 participates in angiogenesis in non-small cell but not small cell carcinoma of the lung.  Cancer Lett . 1998;  120 101-108
  • 75 Nonaka M, Pawankar R, Tomiyama S, Yagi T. A macrolide antibiotic, roxithromycin, inhibits the growth of nasal polyp fibroblasts.  Am J Rhinol . 1999;  13 267-272
  • 76 Davies J, Stern M, Dewar A. et al . CFTR gene transfer reduces the binding of Pseudomonas aeruginosa to cystic fibrosis respiratory epithelium.  Am J Respir Cell Mol Biol . 1997;  16 657-663
  • 77 Pier G B, Grout M, Zaidi T S. et al . Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections.  Science . 1996;  271 64-67
  • 78 Smith J J, Travis S M, Greenberg E P, Welsh M J. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid.  Cell . 1996;  85 229-236
  • 79 Baumann U, Fischer J J, Gudowius P. et al . Buccal adherence of Pseudomonas aeruginosa in patients with cystic fibrosis under long-term therapy with azithromycin.  Infection . 2001;  29 7-11
  • 80 Tsang K W, Ng P, Ho P L. et al . Effects of erythromycin on Pseudomonas aeruginosa adherence to collagen and morphology in vitro Eur Respir J .  2003;  21 401-406
  • 81 Yamasaki T. Adherence of Pseudomonas aeruginosa to mouse tracheal epithelium: the effect of antimicrobial agents.  J Jpn Assoc Infect Dis . 1990;  64 575-583
  • 82 Kawamura-Sato K, Iinuma Y, Hasegagwa T. et al . Effect of subinhibitory concentrations of macrolides on the expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis Antimicrob Agents Chemother .  2000;  44 2869-2872
  • 83 Kawamura-Sato K, Iinuma Y, Hasegagwa T, Yamashino T, Ohta M. Postantibiotic suppression effect of macrolides on the expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis J Infect Chemother .  2001;  7 51-54
  • 84 Tateda K, Ishii Y, Matsumoto T. et al . Direct evidence for antipseudomonal activity of macrolides: exposure-dependant bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin.  Antimicrob Agents Chemother . 1996;  40 2271-2275
  • 85 Kishioka C, Okamoto K, Hassett D J, de Mello D, Rubin B K. Pseudomonas aeruginosa alginate is a potent secretagogue in the isolated ferret trachea.  Pediatr Pulmonol . 1999;  27 174-179
  • 86 Kobayashi H. Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides.  Am J Med . 1995;  99 265-305
  • 87 Mizukane R, Hirataka Y, Kaku M. et al . Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa Antimicrob Agents Chemother .  1994;  38 528-533
  • 88 Saiman L, Chen Y, Gabriel P S, Knirsch C. Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosidans isolated from patients with cystic fibrosis.  Antimicrob Agents Chemother . 2002;  46 1105-1107
  • 89 Torrens T K, Dawkins P, Conway S P, Moya E. Non-tuberculous mycobacteria in cystic fibrosis.  Thorax . 1998;  53 182-185
  • 90 Wallace Jr J R, Zhang Y, Brown-Elliot B A. et al . Repeat positive cultures in Mycobacterium intracellulare lung disease after macrolide therapy represent new infections in patients with nodular bronchiectasis.  J Infect Dis . 2002;  186 266-273
  • 91 McKlendin K, Stark P. Mycobacterium avium intracellulare complex as a cause of bronchiectasis.  Semin Respir Infect . 2001;  16 85-87
  • 92 Piedmonte G, Wolford E T, Fordham L A, Leigh M W, Wood R E. Mediastinal lymphadenopathy caused by Mycobacterium avium-intracellulare complex in a child with normal immunity.  Pediatr Pulmonol . 1997;  24 287-291
  • 93 Tsang K W, Lam S-K, Lam W-K. et al . High seroprevalence of Helicobacter pylori in active bronchiectasis.  Am J Respir Crit Care Med . 1998;  158 1047-1051
  • 94 Lallemand J Y, Stoven V, Annereau J P. et al . Induction by antitumoral drugs of proteins that functionally complement CFTR: a novel therapy for cystic fibrosis [abstract].  Lancet . 1997;  350 711-712
  • 95 Sermet-Gaudelus I, Kessler R, Stoven V. et al . Dramatic improvement of cystic fibrosis during and after antitumurous chemotherapy: a report of three cases.  Pediatr Pulmonol . 1998;  17(suppl) 219-220
  • 96 Gant T W, O'Connor C K, Corbitt R, Thorgeirsson U, Thorgeirsson S S. In vivo induction of liver p-glycoprotein expression by xenobiotics in monkeys.  Toxicol Appl Pharmacol . 1995;  133 269-276
  • 97 Altschuler E L. Azithromycin, the multidrug resistant protein, and cystic fibrosis [letter].  Lancet . 1998;  351 1286
  • 98 Kanoh S, Kondo M, Tamaoki J. et al . Effect of FK506 on ATP-induced intracellular calcium oscillations in cow tracheal epithelium.  Am J Physiol (Lung Cell Molec Physiol) . 1999;  276 L891-L899
  • 99 Zhao D-M, Xue H-H, Chida K. et al . Effect of erythromycin on ATP-induced intracellular calcium response in A549 cells.  Am J Physiol . 2000;  278 L276-L336
  • 100 Tamaoki J, Isono K, Sakai N, Kanemura T, Konno K. Erythromycin inhibits Cl secretion across canine epithelial cells.  Eur Respir J . 1992;  5 234-238
  • 101 Nakanishi N, Ueda N, Kitade M, Moritaka T. A case of cystic fibrosis in a Japanese student.  Jpn J Thoracic Dis . 1995;  33 771-774
  • 102 Ordonez C L, Stulbarg M, Grundland H. et al . Effect of clarithromycin on airway obstruction and sputum neutrophilia in patients with cystic fibrosis.  Am J Respir Crit Care Med . 1999;  159 A680
  • 103 Jaffe A, Francis J, Rosenthal M, Bush A. Long-term azithromycin may improve lung function in children with cystic fibrosis [research letter].  Lancet . 1998;  351 420
  • 104 Wolter J, Seeney S, Bell S. et al . Effect of long-term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised controlled trial.  Thorax . 2002;  57 212-216
  • 105 Equi A, Balfour-Lynn I, Bush A, Rosenthal M. Long-term azithromycin in children with cystic fibrosis: a randomized, placebo-controlled crossover trial.  Lancet . 2002;  360 978-984
  • 106 Ripoll L, Reinert P, Pepin L F, Lagrange P H. Interaction of macrolides with alpha dornase during DNA hydrolysis.  J Antimicrob Chemother . 1996;  37 987-991
  • 107 Saiman L, Marshall B C, Mayer-Hamblett N. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial.  JAMA . 2003;  290 1749-1756
  • 108 Ordonez C L, Stulbarg M, Grundland H, Liu J T, Boushet H A. Effect of clarithromycin on airway obstruction and inflammatory markers in induced sputum in cystic fibrosis: a pilot study.  Pediatr Pulmonol . 2001;  32 29-37
  • 109 Southern K W, Barker P M, Solis A. Macrolide antibiotics for cystic fibrosis.  Cochrane Database Syst Rev . 2000;  (3) CD002203
  • 110 Seppala H, Klauka T, Vuopio-Varkila J. et al . The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance.  N Engl J Med . 1997;  337 441-446
  • 111 Tagaya E, Tamaoki J, Kondo M, Nagai A. Effect of a short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion.  Chest . 2002;  122 213-218
  • 112 Tsang K W, Ho P I, Chan K N. et al . A pilot study of low-dose erythromycin in children with bronchiectasis: a double-blind, placebo-controlled study.  Eur Respir J . 1997;  10 994-999
  • 113 Koh Y Y, Lee M H, Sun Y H, Sung K W, Chae J H. Effect of roxithromycin on airway responsiveness in children with bronchiectasis: a double-blind, placebo-controlled study.  Eur Respir J . 1997;  10 994-999
  • 114 de Benedictis M F, Bush A. Hypothesis paper: rhinosinusitis and asthma-epiphenomenon or causal association?.  Chest . 1999;  115 550-556
  • 115 Rhee C-S, Majima Y, Arima S. et al . Effects of clarithromycin on rheological properties of nasal mucus in patients with chronic sinusitis.  Ann Otol Rhinol Laryngol . 2000;  109 484-487
  • 116 MacLeod C M, Hamid Q A, Cameron L, Tremblay C, Brisco W. Anti-inflammatory activity of clarithromycin in adults with chronically inflamed sinus mucosa.  Adv Ther . 2001;  18 75-82
  • 117 Yamada T, Fujieda S, Mori S, Yamamoto H, Saito H. Macrolide treatment decreased the size of nasal polyps and IL-8 levels in nasal lavage.  Am J Rhinol . 2000;  14 143-148
  • 118 Suzuki H, Shimomura A, Ikeda K. et al . Inhibitory effect of macrolides on interleukin-8 secretion from cultured nasal epithelial cells.  Laryngoscope . 1997;  107 1661-1666
  • 119 Katz L, Doniado S. Polyketide synthesis: prospects for hybrid antibiotics.  Annu Rev Microbiol . 1993;  47 875-912
  • 120 Tsoi C J, Khosla C. Combinatorial biosynthesis of “unnatural” natural products: the polyketide example.  Chem Biol . 1995;  2 355-362
    >