Pharmacopsychiatry 2003; 36: 158-161
DOI: 10.1055/s-2003-45124
Original Paper
© Georg Thieme Verlag Stuttgart · New York

Regio entorhinalis in Schizophrenia: More Evidence for Migrational Disturbances and Suggestions for a New Biological Hypothesis

S. Kovalenko1 , A. Bergmann2 , T. Schneider-Axmann2 , I. Ovary3 , K. Majtenyi4 , L. Havas4 , W. G. Honer5 , B. Bogerts6 , P. Falkai2
  • 1Department of Psychiatry, University of Bonn, Bonn, Germany
  • 2Department of Psychiatry, University of the Saarland, Medical Center, Homburg/Saar, Germany
  • 3Department of Psychiatry, Semelweiss University, Budapest, Hungary
  • 4Institute for Nervous and Mental Diseases, Budapest, Hungary
  • 5Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
  • 6Department of Psychiatry, Universtiy of Magdeburg, Magdeburg, Germany
Further Information

Publication History

Publication Date:
15 December 2003 (online)

Recently we were able to replicate the original finding of migrational disturbances in the entorhinol cortex (ERC) of schizophrenic patients by measuring the distance of pre-alpha cell clusters to the pial surface. In order to replicate this finding, we performed a detailed analysis of the pre-alpha cell clusters in the ERC in post mortem brains of 22 schizophrenic patients and 15 control subjects. Cluster position relative to gray/white matter boundary were measured and normalized by the widths of the gray matter. In the ERC the pre-alpha cell clusters were situated significantly closer to the gray/white matter junction compared to normal controls (around 30 %, F = 9.52, p = 0.004). No specific effects of sex, age or region of investigation were found.

In summary, this is another quantitative replication of pre-alpha cell cluster migrational disturbances in schizophrenia, which are possibly linked to neurobiological abnormalities, e.g. myeloarchitectonic changes. This supports the notion that developmental abnormalities are a core feature of schizophrenia and that the search for candidate genes has to include this aspect, too. However, it is very probable that vulnerability-associated changes - as outlined here - have to be distinguished from disease-related changes.

References

  • 1 Akil M, Lewis D A. Cytoarchitecture of the entorhinal cortex in schizophrenia.  Am J Psychiatry. 1997;  154 1010-1012
  • 2 Altshuler L L, Casanova M F, Goldberg T E, Kleinman J E. The hippocampus and parahippocampus in schizophrenia, suicide, and control brain.  Arch Gen Psychiatry. 1990;  47 1029-1034
  • 3 Arnold S E, Hyman B T, Van Hoesen G W, Damasio A R. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia.  Arch Gen Psychiatry. 1991;  48 625-632
  • 4 Arnold S E, Ruscheinsky D D, Han L Y. Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses.  Biol Psychiatry 1997;. 15;  42 639-647
  • 5 Barbe M F. Tempting fate and commitment in the developing forebrain.  Neuron. 1996;  16 1-4 [Review]
  • 6 Beckmann H. Developmental malformations in cerebral structures of schizophrenic patients.  Eur Arch Psychiatry Clin Neurosci. 1999;  249 Suppl 4 44-447
  • 7 Beckmann H, Senitz D. Developmental malformations in cerebral structures in ”endogenous psychoses”.  J Neural Transm. 2002;  109 421-431 [Review]
  • 8 Bernstein H G, Krell D, Baumann B, Danos P, Falkai P, Diekmann S, Henning H, Bogerts B. Morphometric studies of the entorhinal cortex in neuropsychiatric patients and controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia.  Schizophr Res. 1998;  33 125-132
  • 9 Bogerts B, Meertz E, Schonfeldt-Bausch R. Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage.  Arch Gen Psychiatry. 1985;  42 784-791
  • 10 Braak H, Zur Pigmentoarchitektonik der Großhirnrinde des M enschen. I. Regio entorhinalis.  Zellforsch. 1972;  127 407-438
  • 11 Brown R, Colter N, Corsellis J A, Crow T J, Frith C D, Jagoe R, Johnstone E C, Marsh L. Postmortem evidence of structural brain changes in schizophrenia. Differences in brain weight, temporal horn area, and parahippocampal gyrus compared with affective disorder.  Arch Gen Psychiatry. 1986 Jan;  43 (1) 36-42
  • 12 Couillard-Despres S, Winkler J, Uyanik G, Aigner L. Molecular mechanisms of neuronal migration disorders, quo vadis?.  Curr Mol Med. 2001;  1 677-688 [Review]
  • 13 D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody.  J Neurosci. 1997 Jan 1;  17 (1) 23-31
  • 14 Falkai P, Bogerts B, Rozumek M. Limbic pathology in schizophrenia: the entorhinal region - a morphometric study.  Biol Psychiatry. 1988;  24 515-521
  • 15 Falkai P, Honer W G, David S, Bogerts B, Majtenyi C, Bayer T A. No evidence for astrogliosis in brains of schizophrenic patients. A post-mortem study.  Neuropathol Appl Neurobiol. 1999;  25 48-53
  • 16 Falkai P, Schneider-Axmann T, Honer W G. Entorhinal cortex pre-alpha cell clusters in schizophrenia: quantitative evidence of a developmental abnormality.  Biol Psychiatry. 2000;  47 937-943
  • 17 Feng Y, Walsh C A. Protein-protein interactions, cytoskeletal regulation and neuronal migration.  Nat Rev Neurosi. 2001;  2 408-416
  • 18 Gleeson J G. Neuronal migration disorders.  Ment Retard Dev Disabil Res. 2001;  7 167-171 [Review]
  • 19 Guidotti A, Auta J, Davis J M, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson D R, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E, DiGiorgi Gerevini V. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study.  Arch Gen Psychiatry. 2000 Nov;  57 (11) 1061-1069
  • 20 Guidotti A, Pesold C, Costa E. New neurochemical markers for psychosis: a working hypothesis of their operation.  Neurochem Res. 2000 Oct;  25 (9 - 10) 1207-1218 [Review]
  • 21 Harding B N. Malformations of the nervous system. In: Adams JH, Duchen LW, (eds) Greenfild’s Neuropathology. 5th ed. New York; Oxford University Press 1992: pp. 521-638
  • 22 Harrison P J. On the neuropathology of schizophrenia and its dementia: neurodevelopmental, neurodegenerative or both?.  Neurodegeneration. 1995;  4 1-12 [Review]
  • 23 Hyde T M, Weinberger D R. Seizures and schizophrenia.  Schizophr Bull. 1997;  23 611-622 [Review]
  • 24 Jakob H, Beckmann H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics.  J Neural Transm. 1986;  65 303-326
  • 25 Jakob H, Beckmann H. Gross and histological-criteria for developmental disorders in brains of schizophenics.  J R Soc Med.. 1989;  82 466-469
  • 26 Krimer L S, Herman M M, Saunders R C, Boyd J C, Hyde T M, Carter J M, Kleinman J E, Weinberger D R. A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia.  Cereb Cortex. 1997;  7 732-739
  • 27 Leventer R J, Cardoso C, Ledbetter D H, Dobyns W B. LIS1: from cortical malformation to essential protein of cellular dynamics.  Trend Neurosci. 2001;  24 439-492
  • 28 Lewis D A, Levitt P. Schizophrenia as a disorder of neurodevelopment.  Annu Rev Neurosci. 2002;  25 409-432 [Review]
  • 29 Marsh L, Suddath R L, Higgins N, Weinberger D R. Medial temporal lobe structures in schizophrenia: relationship of size to duration of illness.  Schizophr Res. 1994;  11 225-238
  • 30 McEvilly R J, de Diaz M O, Schonemann M D, Hooshmand F, Rosenfeld M G. Transcriptional regulation of cortical neuron migration by POU domain factors.  Science. 2002;  295 1528-1532
  • 31 Mimmack M, Ryan M, Baba H, Navarro-Ruiz J, Iritani S, Faull R, McKen P, Jines P, Arai H, Starkey M, Emson P, Bahn S. Gene expression analysis: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22.  Proc Natl Acad Sci USA. 2002;  99 4680-4685
  • 32 Ohmiya M, Fukumitsu H, Nitta A, Nomoto H, Furukawa Y, Furukawa S. Administration of FGF-2 to embryonic mouse brain induces hydrocephalic brain morphology and aberrant differentiation of neurons in the postnatal cerebral cortex.  J Neurosci Res. 2001;  65 228-235
  • 33 Phelps P E, Rich R, Dupuy-Davies S, Rios Y, Wong T. Evidence for a cell-specific action of Reelin in the spinal cord.  Dev Biol. 2002;  244 180-198
  • 34 Pilz D, Stoodley N, Golden J A. Neuronal migration, cerebral cortical development, and cerebral cortical anomalies.  J Neuropath Exp Neur. 2002;  61 1-11 [Review]
  • 35 Talamini L M, Koch T, Ter Horst G J, Korf J. Methylazoxymethanol acetate-induced abnormalities in the entorhinal cortex of the rat parallels with morfological findings in schizophrenia.  Brain Res. 1999;  789 293-306
  • 36 Vogeley K, Hobson T, Schneider-Axmann T, Honer W, Bogerts B, Falkai P. Compartemental volumetry of the superior temporal gyrus reveals sex differences schizophrenia - a post-mortem study.  Schizophr Res. 1998 May 25;  31 (2 - 3) 83-87
  • 37 Weinberger D R. Implications of normal brain development for the pathogenesis of schizophrenia.  Arch Gen Psychiatry.. 1987;  44 660-669
  • 38 Weinberger D R. From neuropathology to neurodevelopment.  Lancet 1995;. 26;  346 552-557 [Review]
  • 39 Williams R S. Cerebral malformations arising in the first half of gestation. In: Evrard PH, Minkowski A, (eds) Developmental Neurobiology. New York; Raven Press 1989: pp. 11-20
  • 40 Wright I C, Rabe-Hesketh S, Woodruff P W, David A S, Murray R M, Bullmore E T. Meta-analysis of regional brain volumes in schizophrenia.  Am J Psychiatry. 2000;  157 16-25

Prof. Dr. med. Peter Falkai

Department of Psychiatry

University of the Saarland

Medical Center

D-66421 Homburg/Saar, Germany

Phone: (+49) 6841-162-4202

Fax: (+49) 6841-162-4270

Email: peter.falkai@uniklinik-saarland.de

    >