Plant Biol (Stuttg) 2003; 5(4): 400-410
DOI: 10.1055/s-2003-42715
Original Paper

Georg Thieme Verlag Stuttgart · New York

Characterisation of the Chloroplast DNA psbT-H Region and the Influence of Dyad Symmetrical Elements on Phylogenetic Reconstructions

D. Quandt 1 , K. Müller 1 , S. Huttunen 2
  • 1Botanisches Institut und Botanischer Garten, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
  • 2Botanical Museum, University of Helsinki, Helsinki, Finland
Further Information

Publication History

Publication Date:
02 October 2003 (online)

Abstract

The tandemly arranged genes psbT, psbN, and psbH code for proteins of photosystem II and are located in the large single copy region (LSC) of the chloroplast genome, downstream of psbB. So far, most of the studies dealing with this region have been interested in the organization and transcription of the psbB operon, while less is known about the transcription of psbN or the phylogenetic utility of this region. In the current study we discuss a sigma70-type bacterial promoter motif upstream of psbN and present its consensus sequence for bryophytes. An analysis of the 3′ flanking inverted repeat sequences revealed a dyad symmetrical element, which is able to form a stable stem-loop structure. This hairpin structure is characterised for land plants, with an emphasis on bryophytes. Furthermore, we observed an inversion of up to 9 bases in the loop region of the hairpin structure, which occasionally occurred in different unrelated bryophyte families, orders and classes. Small inversions are frequently obscured in the alignment since, during automatic alignment, many gap-weighting schemes may not introduce gaps, nor does a manual insertion of gaps always seem needed at first glance. In subsequent phylogenetic analyses, minute inversion may overweight a particular mutation by interpreting the single inversion event as multiple apomorphic substitutions, which is particularly problematic since such inversion events are known to often be highly homoplastic. In the present study we use the psbT-N spacer as an example to quantify the effect of such small inversions, contrasting the phylogenetic structure obtained with and without information from the hairpin loop. We show that obscured minute inversions can highly significantly reduce the robustness of the phylogenetic hypothesis inferred from the data set.

References

  • 1 Barkan A.. Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic mRNAs.  European Molecular Biology Organization Journal. (1988);  7 2637-2644
  • 2 Blowers A., Klein D. U., Ellmore G. S., Bogorad L.. Functional in vivo analysis of the 3′ flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes.  Molecular and General Genetics. (1993);  238 339-349
  • 3 Borsch T., Hilu W., Quandt D., Wilde V., Neinhuis C., Barthlott W.. Non-coding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms.  Journal of Evolutionary Biology. (2003);  16 558-576
  • 4 Crayn D. M., Quinn C. J.. The evolution of the atpB-rbcL intergeneic spacer in the epacrids (Ericales) and its systematic and evoluionary implications.  Molecular Phylogenetics and Evolution. (2000);  16 238-252
  • 5 Dixit R., Trivedi P. K., Nath P., Sane P. V.. Organization and post-transcriptional processing of the psbB operon from chloroplasts of Populus deltoids.  Current Genetics. (1999);  36 165-172
  • 6 Downie S. R., Palmer J. D.. Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. Soltis, P. S. et al., eds. Molecular Systematics of Plants. New York; Chapman and Hall (1992): 14-35
  • 7 Dumolin-Lapègue S., Pemonge M. H., Petit R. J.. Association between chloroplast and mitochondrial lineages in oaks.  Molecular Biology and Evolution. (1998);  15 1321-1331
  • 8 Farris J. S.. The retention index and the rescaled consistency index.  Cladistics. (1989);  5 417-419
  • 9 Golenberg E. M., Clegg M. T., Durbin M. L., Doebley J., Ma D. P.. Evolution of a noncoding region of the chloroplast genome.  Molecular Phylogenetics and Evolution. (1993);  2 52-64
  • 10 Graham S. W., Olmstead R. G.. Evolutionary significance of an unusual chloroplast DNA inversion found in two basal angiosperm lineages.  Current Genetics. (2000 a);  37 183-188
  • 11 Graham S. W., Olmstead R. G.. Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms.  American Journal of Botany. (2000 b);  87 1712-1730
  • 12 Graham S. W., Reeves P. A., Burns A. C. E., Olmstead R. G.. Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference.  International Journal of Plant Sciences. (2000);  161 (Suppl.) S83-S96
  • 13 Gruissem W.. Chloroplast gene expression: how plants turn their plastids on.  Cell. (1989);  56 161-170
  • 14 He-Nygrén X.-L., Piippo S.. hylogenetic relationships of generic complex Chiloscyphus-Lophocolea-Heteroscyphus (Geocalycaceae, Hepaticae): Insights from three chloroplast genes and morphology.  Annales Botanici Fennici. (2003);  in press
  • 15 Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C. R., Meng B. Y., Li Y. Q., Kanno A., Nishizawa Y., Hirai A., Shinozaki K., Sugiura M.. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals.  Molecular and General Genetics. (1989);  217 185-194
  • 16 Hong H., Hallik R. B.. Gene structure and expression of a novel Euglena gracilis chloroplast operon encoding cytochrome b6 and the b and e subunits of the H+-ATP synthase complex.  Current Genetics. (1994);  25 270-281
  • 17 Hong L., Stevenson J. K., Roth W. B., Hallick R. B.. Euglena gracilis chloroplast psbB, psbT, psbH and psbN gene cluster: regulation of psbB-psbT pre-mRNA processing.  Molecular and General Genetics. (1995);  247 180-188
  • 18 Hupfer H., Swiatek M., Hornung S., Herrmann R. G., Maier R. M., Chiu W. L., Sears B.. Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable euoenothera plastomes.  Molecular and General Genetics. (2000);  263 581-585
  • 19 Ignatov M., Huttunen S.. Brachytheciaceae (Bryophyta) - a family of sibling genera.  Arctoa. (2002);  11 245-296
  • 20 Johnson C. H., Schmidt G. W.. The psbB gene cluster of the Clamydomonas reinhardtii chloroplast: sequence and transcriptional analyses of psbN and psbH. .  Plant Molecular Biology. (1993);  22 645-658
  • 21 Kato T., Kaneko T., Sato S., Nakamura Y., Tabata S.. Complete structure of the chloroplast genome of a legume, Lotus japonicus. .  DNA Research. (2000);  7 323-330
  • 22 Kelchner S. A., Wendel J. F.. Hairpins create minute inversions in non-coding regions of chloroplast DNA.  Current Genetics. (1996);  30 259-262
  • 23 Kelchner S. A., Clark L. G.. Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae).  Molecular Phylogenetics and Evolution. (1997);  8 385-397
  • 24 Kelchner S. A.. The Evolution of non-coding chloroplast DNA and its application in plant systematics.  Annals of the Missouri Botanical Gardens. (2000);  87 482-498
  • 25 Kluge A. G., Farris J. S.. Quantitative phyletics and the evolution of anurans.  Systematic Zoology. (1969);  18 1-32
  • 26 Kohchi T., Yoshida T., Komano T., Ohyama K.. Divergent mRNA transcription in the chloroplast psbB operon.  European Molecular Biology Organization Journal. (1988);  7 885-891
  • 27 Kugita M., Kaneko A., Yamamoto Y., Takeya Y., Matsumoto T., Yoshinaga K.. The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants.  Nucleic Acids Research. (2003);  31 176-721
  • 28 Maier R. M., Neckermann K., Igloi G. L., Kossel H.. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing.  Journal of Molecular Biology. (1995);  251 614-628
  • 29 Mathews D. H., Zuker M., Turner D. H.. RNA structure 3.6. http//www.bioinfo.math.edu . (2001)
  • 30 Mes T. H. M., Kuperus P., Kirschner J., Štìpánek J., Oosterveld P., Štorchová H., den Nijs J. C. M.. Hairpins involving both inverted and direct repeats are associated with homoplasious indels in non-coding chloroplast DNA of Taraxacum (Lactuceae: Asteraceae).  Genome. (2000);  43 634-641
  • 31 Müller J., Müller K.. QuickAlign: a new alignment editor.  Plant Molecular Biology Reporter. (2003);  21 5
  • 32 Müller K.. PRAT: Computer program for phylogeneticanalysis of large data sets. Program distributed by the author. Bonn; Botanical Institute, University of Bonn (2002)
  • 33 Nixon K. C.. The Parsimony Ratchet, a new method for rapid parsimony analysis.  Cladistics. (1999);  15 407-414
  • 34 Ogihara Y., Isono K., Kojima T., Endo A., Hanaoka M., Shiina T., Terachi T., Utsugi S., Murata M., Mori M., Takumi S., Ikeo K., Gojobori T., Murai R., Murai K., Matsuoka Y., Ohnishi Y., Tajiri H., Tsunewaki K.. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA.  Molecular Genetics and Genomics. (2002);  266 740-746
  • 35 Ohyama K., Fukuzawa H., Kohchi T., Shirai H., Sano T., Sano S., Umesono K., Shiki Y., Takeuchi M., Chang Z., Aota S., Inokuchi H., Ozeki H.. Chloroplast gene organization deduced from complete sequence of the liverwort Marchantia polymorpha chloroplast DNA.  Nature. (1986);  322 572-574
  • 36 Quandt D.. Molecular evolution and phylogenetic utility of non-coding DNA: addressing relationships among pleurocarpous mosses. Bonn; University of Bonn (2002)
  • 38 Sang T., Crawford D. J., Stuessy T.. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeonicaeae).  American Journal of Botany. (1997);  84 1120-1136
  • 39 Sato S., Nakamura Y., Kaneko A., Asamizu E., Tabata S.. Complete structure of the chloroplast genome of Arabidopsis thaliana. .  DNA Research. (1999);  6 283-290
  • 40 Schmitz-Linneweber C., Maier R. M., Alcaraz J. P., Cottet A., Herrmann R. G., Mache R.. The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization.  Plant Molecular Biology. (2001);  45 307-315
  • 41 Shaw A. J.. Phylogeny of the Sphagnopsida based on chloroplast and nuclear DNA sequences.  Bryologist. (2000);  103 277-306
  • 42 Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K., Ohto C., Torazawa K., Meng B. Y., Sugita M., Deno H., Kamogashira T., Yamada K., Kusuda J., Takaiwa F., Kato T., Tohdoh N., Shimada H., Sugiura M.. The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression.  European Molecular Biology Organization Journal. (1986);  5 2043-2049
  • 43 Stech M., Quandt D., Lindlar A., Frahm J.-P.. The systematic position of Pulchrinodus inflatus (Eucamptodon inflatus) based on molecular data. Studies in austral temperate rain forest bryophytes.  Australian Journal of Botany. (2003);  in press
  • 44 Stern D. B., Gruissem W.. Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription.  Cell. (1987);  51 1145-1157
  • 45 Stern D. B., Jones H., Gruissem W.. Function of plastid mRNA 3′ inverted repeats. RNA stabilization and gene-specific protein binding.  Journal of Biological Chemistry. (1989);  264 18742-18750
  • 46 Stern D. B., Radwanski E. R., Kindle K. L.. A 3′ stem/loop structure of Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. .  Plant Cell. (1991);  3 285-297
  • 47 Swofford D. L.. PAUP*4b10. Phylogenetic Analysis Using Parsimony (*and other Methods). Sunderland; Sinauer Associates (2002)
  • 48 Tsudzuki J., Nakashima K., Tsudzuki T., Hiratsuka J., Shibata M., Wakasugi T., Sugiura M.. Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. .  Molecular and General Genetics. (1992);  232 206-214
  • 49 Turmel M., Otis C., Lemieux C.. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: Insights into the architecture of ancestral chloroplast genomes.  Proceedings of the National Academy of Sciences USA. (1999);  96 10248-10253
  • 50 Umesono K., Ozeki H.. Chloroplast gene organization in plants.  Trends in Genetics. (1987);  3 281-287
  • 51 Wakasugi T., Tsudzuki J., Ito S., Nakashima K., Tsudzuki J., Sugiura M.. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. .  Proceedings of the National Academy of Sciences USA. (1994);  91 9794-9798
  • 52 Wakasugi T., Nagai T., Kapoor M., Sugita M., Ito M., Ito S., Tsudzuki J., Nakashima K., Tsudzuki J., Suzuki Y., Hamada A., Ohta T., Inamura A., Yoshinaga K., Sugiura M.. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division.  Proceedings of the National Academy of Sciences USA. (1997);  94 5967-5972
  • 53 Wakasugi T., Nishikawa A., Yamada K., Sugiura M.. Complete nucleotide sequence of the chloroplast genome from a fern, Psilotum nudum. GenBank. NC 003386. (2002)
  • 54 Westhoff P., Herrmann R. G.. Complex RNA maturation in chloroplasts. The psbB operon from spinach.  European Journal of Biochemistry. (1988);  171 551-564

D. Quandt

Rheinische Friedrich-Wilhelms-Universität Bonn
Botanisches Institut und Botanischer Garten, AG Bryologie

Meckenheimer Allee 170

53115 Bonn

Germany

Email: d.quandt@uni-bonn.de

Section Editor: F. Salamini

    >