Klinische Neurophysiologie 2003; 34(2): 55-64
DOI: 10.1055/s-2003-40125
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Wertigkeit neurophysiologischer Verfahren bei der Differenzialdiagnose der Systematrophien

Importance of Neurophysiological Tests in the Differential Diagnosis of System AtrophiesV.  Moshagen1 , C.  Moschner1 , K.  Wessel1
  • 1Neurologische Klinik, Städtisches Klinikum und Forschungsgesellschaft für Kognitive Neurologie, Institut an der Technischen Universität, Braunschweig
Further Information

Publication History

Publication Date:
20 June 2003 (online)

Zusammenfassung

Trotz der in vielen Fällen klaren molekulargenetischen Klassifizierung der so genannten Systematrophien sind elektrophysiologische/neurophysiologische Untersuchungen bei diesen Erkrankungen weiterhin von beträchtlicher Bedeutung. Dies bezieht sich auf die phänomenologische Beschreibung, auf die Differenzialdiagnose insbesondere bei Erkrankungsbeginn, sowie auf die durchaus vielen genetisch nicht oder noch nicht zu definierenden Fälle und Krankheiten. Außerdem haben diese Methoden einen Stellenwert für die Abschätzung der Prognose im Verlauf. Der vorliegende Artikel gibt eine Übersicht über elektrophysiologische/neurophysiologische Befunde, wie sie bei den so genannten Systematrophien, insbesondere unter den oben genannten Aspekten, erwartet werden können.

Abstract

Electrophysiological/neurophysiological examinations continue to be most important in system atrophies in spite of the fact that in many cases these diseases can be clearly classified in respect of molecular genetics. These examinations refer in particular to the phenomenological description and to the differential diagnosis especially at the onset of the disease as well as to the genetically not or not yet identifiable individual cases and diseases. Besides, these methods help to say something about the future course of the diseases. The following article reviews the electrophysiological/neurophysiological findings that may be expected in the diseases known as „system atrophies” with particular reference to the aspects mentioned above.

Literatur

  • 1 Van de Warrenburg B PC, Sinke R J, Verschuuren-Bemelmans C C. et al . Spinocerebellar ataxias in the Netherlands. Prevalence and age at onset variance analysis.  Neurology. 2002;  58 702-708
  • 2 Riess O, Schmidt T, Schöls L. Autosomal dominant vererbte spinozerebellare Ataxien: Klinik, Genetik und Pathogenese.  Dt Ärztebl. 2001;  98 1546-1558
  • 3 Subramony S H, Filla A. Autosomal dominant spinocerebellar ataxias ad infinitum?.  Neurology. 2001;  56 287-289
  • 4 Schöls L, Amoiridis G, Büttner T, Przuntek H, Epplen J T, Riess O. Autosomal dominant cerebellar ataxia: Phenotypic differences in genetically defined subtypes?.  Ann Neurol. 1997;  42 924-932
  • 5 Gomez C M, Thompson R M, Gammack J T, Perlaman S L, Dobyns W B, Truwit C L, Zee D S, Clark H B, Anderson J H. SCA6: Gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset.  Ann Neurol. 1997;  42 933-950
  • 6 Benomar A, Krols L, Stevanin G. et al . The gene for autosomal dominant ataxia with pigmentary macula dystrophy maps to chromosome 3p12 - 21.1.  Nat Genet. 1995;  10 84-88
  • 7 Gouw L G, Kaplan C D, Haines J H. et al . Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome 3p.  Nat Genet. 1995;  10 89-93
  • 8 Benton C S, de Silva R, Rutledge S L, Bohlega S, Ashizawa T, Zohgbi H Y. Molecular and clinical studies in SCA7 define a broad clinical spectrum and the infantile phenotype.  Neurology. 1998;  51 1081-1086
  • 9 Harding A E. „Idiopathic” late onset cerebellar ataxia. A clinical study of 36 cases.  J Neurol Sci. 1981;  51 259-271
  • 10 Klockgether T, Schroth G, Dichgans J. Idiopathic cerebellar ataxia of late onset: natural history and MRI morphology.  J Neurol Neurosurg Psych. 1990;  53 297-305
  • 11 Chamberlain S, Shaw J, Rowland A. et al . Mapping of mutation causing Friedreich's ataxia to human chromosome 9.  Nature. 1988;  334 248-250
  • 12 Babcock R, de Silva D, Oaks R. et al . Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin.  Science. 1997;  276 1709-1712
  • 13 Campuzano V, Montermini L, Lutz Y. et al . Frataxin is reduced in Friedreich's ataxia patients and is associated with mitochondrial membranes.  Hum Mol Genet. 1997;  6 1771-1780
  • 14 Klockgether T, Chamberlain S, Wüllner U. et al . Late-onset Friedreich's ataxia: molecular genetics, clinical neurophysiology, and magnetic resonance imaging.  Arch Neurol. 1993;  50 803-806
  • 15 Klockgether T, Zühlke C, Schulz J B, Bürk K, Fetter M, Dittmann H, Skalej M, Dichgans J. Friedreich's ataxia with retained tendon reflexes: Molecular genetics, clinical neurophysiology, and magnetic resonance imaging.  Neurology. 1996;  46 118-121
  • 16 Dürr A, Cossee M, Agid Y. et al . Clinical and genetic abnormalities in patients with Friedreichs ataxia.  N Engl J Med. 1996;  335 1169-7115
  • 17 Harding A E. Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features.  Brain. 1981;  104 589-620
  • 18 Gilman S, Lown P A, Quinn N. et al . Consensus statement on the diagnosis of multiple system atrophy.  J Neurol Sci. 1999;  163 94-98
  • 19 Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin R C. et al . Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski Syndrome): Report of the NINDS-SPSP international workshop.  Neurology. 1996;  47 1-9
  • 20 Fink J K, Heimann-Patterson T. et al . Hereditary spastic paraplegia: Advances in genetic research.  Neurology. 1996;  46 1507-1514
  • 21 McDermott C J, White K, Bushby K, Shaw P J. Hereditary spastic paraparesis: a review of new developments.  J Neurol Neurosurg Psychiatry. 2000;  69 150-160
  • 22 Figlewicz D A, Bird T D. „Pure” hereditary spastic paraplegias: The story becomes complicated.  Neurology. 1999;  53 5-7
  • 23 Peretti A, Santoro L, Lanzillo B. et al . Autosomal dominant cerebellar ataxia type I: multimodal electrophysiological study and comparison between SCA1 and SCA2 patients.  J Neurol Sci. 1996;  142 45-53
  • 24 Abele M, Bürk K, Andres F, Topka H. et al . Autosomal dominant cerebellar ataxia type I: Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3.  Brain. 1997;  120 2141-2148
  • 25 Yokota T, Sasaki H, Iwabuchi K, Shiojiri T, Yoshino A, Otagiri A, Inaba A, Yuasa T. Electrophysiological features of central motor conduction in spinocerebellar atrophy type 1, type 2, and Machado-Joseph disease.  J Neurol Neurosurg Psychiatry. 1998;  65 530-534
  • 26 Schöls L, Amoiridis G, Langkafel M, Schols S, Przuntek H. Motor evoked potentials in the spinocerebellar ataxias type 1 and type 3.  Muscle Nerve. 1997;  20 226-228
  • 27 Restivo D A, Giuffrida S, Rapisarda G. et al . Central motor conduction to lower limb after transcranial magnetic stimulation in spinocerebellar ataxia type 2 (SCA2).  Clin Neurophysiol. 2000;  111 630-635
  • 28 Soong B W, Lin K P. An electrophysiologic and pathologic study of peripheral nerves in individuals with Machado-Joseph disease.  Zhonghua Yi Xue Za Zhi (Taipeh). 1998;  61 181-187
  • 29 Schöls L, Krüger R, Amoiridis G, Przuntek H, Epplen J T, Riess O. Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds.  J Neurol Neurosurg Psychiatry. 1998;  64 73-76
  • 30 Moschner C, Perlman S, Baloh R W. Comparison of oculomotor findings in the progressive ataxia syndromes.  Brain. 1994;  117 15-25
  • 31 Wessel K, Moschner C, Wandinger K-P, Kömpf D, Heide W. Oculomotor testing in the differential diagnosis of degenerative ataxic disorders.  Arch Neurol. 1998;  55 949-956
  • 32 Büttner N, Geschwind D, Jen J C, Perlman S, Pulst S M, Baloh R W. Oculomotor phenotypes in autosomal dominant ataxias.  Arch Neurol. 1998;  55 1353-1357
  • 33 Burk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, Klockgether T. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3.  J Neurol. 1999;  246 789-797
  • 34 Klostermann W, Zühlke C, Heide W, Kompf D, Wessel K. Slow saccades and other eye movement disorders in spinocerebellar atrophy type 1.  J Neurol. 1997;  244 105-111
  • 35 Oh A K, Jacobson K M, Jen J C, Baloh R W. Slowing of voluntary and involuntary saccades: an early sign in spinocerebellar ataxia type 7.  Ann Neurol. 2001;  49 801-804
  • 36 Durig J S, Jen J C, Demer J L. Ocular motility in genetically defined autosomal dominant cerebellar ataxia.  Am J Ophthalmol. 2002;  133 718-721
  • 37 Takeichi N, Fukushima K, Sasaki H, Yabe I, Tashiro K, Inuyama Y. Dissociation of smooth pursuit and vestibulo-ocular reflex cancellation in SCA-6.  Neurology. 2000;  22 (54) 860-866
  • 38 Wessel K, Diener H C, Dichgans J. Zum Verlauf von Heredoataxien. In: Fischer PA, Baas H, Enzensberger W (Hrsg) Verhandlungen der Deutschen Gesellschaft für Neurologie, Band 5. Berlin, New York, London, Paris; Springer Verlag 1989: 823-826
  • 39 Klockgether T, Ludtke R, Kramer B, Abele B, Bürk K, Schöls L, Riess O, Laccone F, Boesch S, Lopes-Cendes I, Brice A, Inzelberg R, Zilber N, Dichgans J. The natural history of degenerative ataxia: a retrospective study in 466 patients.  Brain. 1998;  121 589-600
  • 40 Wessel K, Huss G-P, Brückmann H, Kömpf D. Follow-up of neurophysiological tests and CT in late-onset cerebellar ataxia and multiple system atrophy.  J Neurol. 1993;  240 168-176
  • 41 Claus D, Harding A E, Hess C W. et al . Central motor conduction in degenerative ataxic disorders: a magnetic stimulation study.  J Neurol Neurosurg Psychiatr. 1988;  51 790-795
  • 42 Huss G P, Wessel K, Engel P, Kömpf K. Neurophysiological findings in Friedreich's ataxia. In: Mauritz K-H, Hömberg V (eds) Neurologische Rehabilitation 2. Bern; Verlag Hans Huber 1992
  • 43 Cruz Martínez A, Anciones B. Central motor conduction to upper and lower limbs after magnetic stimulation of the brain and peripheral nerve abnormalities in 20 patients with Friedreich's ataxia.  Acta Neurol Scand. 1992;  85 323-326
  • 44 Schöls L, Amoiridis G, Przuntek H. et al . Friedreich's ataxia: Revision of the phenotype according to molecular genetics.  Brain. 1997;  120 2131-2140
  • 45 Cruz Martínez A, Palau F. Central motor conduction time by magnetic stimulation of the cortex and peripheral nerve conduction follow-up studies in Friedreich's ataxia.  Electroencephalogr Clin Neurophysiol. 1997;  105 458-461
  • 46 Santoro L, Perretti A, Lanzillo B, Coppola G, De Joanna G, Manganelli F, Cocozza S, De Michele G, Filla A, Caruso G. Influence of GAA expansion size and disease duration on central nervous system impairment in Friedreich's ataxia: contribution to the understanding of the pathophysiology of the disease.  Clin Neurophysiol. 2000;  111 1023-1030
  • 47 Coppola G, de Michele G, Cavalcanti F. et al . Why do some Friedreich's ataxia patients retain tendon reflexes. A clinical, neurophysiological and molecular study?.  J Neurol. 1999;  246 353-357
  • 48 Pedersen L, Trojaburg W. Visual, auditory and somatosensory pathway involvement in hereditary cerebellar ataxia, Friedreich's ataxia and familial spastic paraplegia.  Electroencephal Clin Neurophysiol. 1981;  52 283-297
  • 49 Beltinger A, Riffel B, Stöhr M. Somatosensory evoked potentials following median and tibial nerve stimulation in patients with Friedreich's ataxia.  Eur Arch Psychiatr Neurol Sci. 1987;  236 358-363
  • 50 Santoro L, Perretti A, Filla A, De Michele G, Lanzillo B, Barbieri F, Crisci C, Rippa P G, Caruso G. Is early onset cerebellar ataxia with retained tendon reflexes identifiable by electrophysiologic and histologic profile? A comparison with Friedreich's ataxia.  J Neurol Sci. 1992;  113 43-49
  • 51 Abele M, Schulz J B, Bürk K. et al . Evoked potentials in multiple system atrophy (MSA).  Acta Neurol Scand. 2000;  101 111-115
  • 52 Abbruzzese G, Marchese R, Trompetto C. Sensory and motor evoked potentials in multiple system atrophy: A comparative study with Parkinson's disease.  Mov Disord. 1997;  12 315-321
  • 53 Cruz Martínez A, Arpa J, Alonso M, Palomo F, Villoslada C. Transcranial magnetic stimulation in multiple system and late onset cerebellar atrophies.  Acta Neurol Scand. 1995;  92 218-224
  • 54 Mondelli M, Rossi A, Scarpini C, Guazzi G C. Motor evoked potentials by magnetic stimulation in hereditary and sporadic ataxia.  Electromyogr Clin Neurophysiol. 1995;  35 415-424
  • 55 Quinn N. Multiple system atrophy. In: Marsden CD, Jahn S (eds) Movement disorders 3. London; Butterworths 1994
  • 56 Yamamoto M, Kachi T, Sobue G. Pain-related and electrically stimulated somatosensory evoked potentials in patients with Machado-Joseph-disease and Multiple System Atrophy.  Internal Medicine. 1997;  36 550-555
  • 57 Pramstaller P P, Wenning G K, Smith S JM, Beck R O, Quinn N P, Fowler C J. Nerve conduction studies, skeletal muscle EMG, and sphincter EMG in multiple system atrophy.  J Neurol Neurosurg Psychiatry. 1995;  58 618-621
  • 58 Abele M, Schulz J B, Bürk K. et al . Nerve conduction studies in multiple system atrophy.  Eur Neurol. 2000;  43 221-223
  • 59 Kamitani T, Kuroiwa Y, Wang L, Li M, Suzuki Y, Takahashi T, Ikegami T, Matsubara S. Visual event-related potential changes in two subtypes of multiple system atrophy, MSA-C and MSA-P.  J Neurol. 2002;  249 975-982
  • 60 Stocci F, Carbone A, Inghilleri M. et al . Urodynamic and neurophysiological evaluation in Parkinson's disease and multiple system atrophy.  J Neurol Neurosurg Psychiatry. 1997;  62 507-511
  • 61 Palace J, Chandiramani V A, Fowler C J. Value of sphincter electromyography in the diagnosis of multiple system atrophy.  Muscle Nerve. 1997;  20 1396-1403
  • 62 Sakakibara R, Hattori T, Uchiyama T, Yamanishi T. Videourodynamic and sphincter motor unit potential analyses in Parkinson's disease and multiple system atrophy.  J Neurol Neurosurg Psychiatry. 2001;  71 600-606
  • 63 Vodušek D B. Sphincter EMG and differential diagnosis of multiple system atrophy.  Mov Disorders. 2001;  16 (4) 600-607
  • 64 Libelius R, Johansson F. Quantitative electromyography of the external anal sphincter in Parkinson's disease and multiple system atrophy.  Muscle Nerve. 2000;  23 1250-1256
  • 65 Valldeoriola F, Valls-Solé J, Tolosa E S, Marti M J. Striated anal sphincter denervation in patients with progressive supranuclear palsy.  Mov Disorders. 1995;  10 550-555
  • 66 Davie C A, Wenning G K, Barker G J. et al . Differentiation of multiple system atrophy from idiopathic Parkinson's disease using proton magnetic resonance spectroscopy.  Ann Neurol. 1995;  37 204-210
  • 67 Burn D J, Sawle G V, Brooks D J. Differential diagnosis of Parkinson's disease, multiple system atrophy, and Steele-Richardson-Olszewski syndrome: Discriminant analysis of striatal 18F-dopa PET data.  J Neurol Neurosurg Psychiatry. 1994;  57 278-284
  • 68 Asato R, Akiguchi I, Masunaga S, Hashimoto N. Magnetic resonance imaging distinguishes progressive supranuclear palsy from multiple system atrophy.  J Neural Transm. 2000;  107 1427-1436
  • 69 Schocke M FH, Seppi K, Esterhammer R. et al . Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD.  Neurology. 2002;  58 575-580
  • 70 Horimoto Y, Aiba I, Yasuda T, Ohkawa Y, Katayama T, Yokokawa Y, Goto A, Ito Y. Longitudinal MRI study of multiple system atrophy - when do the findings appear, and what is the course.  J Neurol. 2002;  249 847-854
  • 71 Yoshita M. Differentiation of idiopathic Parkinson's disease from striatonigral degeneration and progressive supranuclear palsy using iodine-123 meta-iodobenzylguanidine myocardial scintigraphy.  J Neurol Sci. 1998;  155 60-67
  • 72 Orimo S, Ozawa E, Nakade S, Sugimoto T, Mizusawa H. 123I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson's disease.  J Neurol Neurosurg Psychiatry. 1999;  67 189-194
  • 73 Braune S, Reinhardt M, Schnitzer R, Riedel A, Lücking C H. Cardiac uptake of [123I]MIBG separates Parkinson's disease from multiple system atrophy.  Neurology. 1999;  53 1020-1025
  • 74 Goldstein D S, Holmes C, Cannon R O, Eisenhofer G, Kopin I J. Sympathetic cardioneuropathy in dysautonomias.  N Engl J Med. 1997;  336 696-702
  • 75 Kimber J R, Watson L, Mathias C J. Distinction of idiopathic Parkinson's disease from multiple system atrophy by stimulation of growth hormone release with clonidine.  Lancet. 1997;  349 1877-1881
  • 76 Kimber J R, Mathias C J, Lees A J, Bleasdale-Barr K, Chang H S, Churchyard A, Watson L. Physiological, pharmacological and neurohormonal assessment of autonomic function in progressive supranuclear palsy.  Brain. 2000;  123 1422-1430
  • 77 Clarke C E, Ray P S, Speller M. Failure of the clonidine growth hormone stimulation test to differentiate multiple system atrophy from early or advanced Parkinson's disease.  Lancet. 1999;  353 1329-1330
  • 78 Tranchant C, Guiraud-Chaumeil C, Exhaniz-Laguna A, Warter J M. Is clonidine growth hormone stimulation a good test to differentiate multiple system atrophy from idiopathic Parkinson's disease?.  J Neurol. 2000;  415 853-856
  • 79 Valls-Solé J. Neurophysiological characterization of parkinsonian syndromes.  Neurophysiol Clin. 2000;  30 352-367
  • 80 Kofler M, Muller J, Reggiani L, Wenning G K. Somatosensory evoked potentials in progressive supranuclear palsy.  J Neurol Sci. 2000;  179 (S 1 - 2) 85-916
  • 81 Abbruzzese G, Tabaton M, Morena M, Dall'Agata D, Favale E. Motor and sensory evoked potentials in progressive supranuclear palsy.  Mov Disord. 1991;  6 49-54
  • 82 Miwa H, Mizuno Y. Enlargements of somatosensory-evoked potentials in progressive supranuclear palsy.  Acta Neurol Scand. 2002;  106 209-212
  • 83 Miwa H, Mori H, Abe K, Hoshino I, Mizuno Y. Corticobasal degeneration and progressive supranuclear palsy - differentiation by somatosensory-evoked potentials.  No To Shinkei. 1996;  48 253-257
  • 84 Tolosa E S, Zeese J A. Brainstem auditory evoked responses in progressive supranuclear palsy.  Ann Neurol. 1979;  6 369
  • 85 Laffont F, Agar N, Zuber M, Minz M, Roux S, Bruneau N, Meunier S, Cathala H P. Auditory evoked responses (AER) and augmenting-reducing phenomenon in patients with progressive supranuclear palsy (PSP).  Neurophysiol Clin. 1991;  21 149-160
  • 86 Pakalnis A, Drake M E, Huber S, Paulson G, Phillips B. Central conduction time in progressive supranuclear palsy.  Electromyogr Clin Neurophysiol. 1992;  32 41-42
  • 87 Langheinrich T, Tebartz van Elst L, Lagreze W A, Bach M, Lucking C H, Greenlee M W. Visual contrast response functions in Parkinson's disease: evidence from electroretinograms, visually evoked potentials and psychophysics.  Clin Neurophysiol. 2000;  111 66-74
  • 88 Rottach K G, Riley D E, DiScenna A O, Zivotofsky A Z, Leigh R J. Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes.  Ann Neurol. 1996;  39 368-377
  • 89 Vidailhet M, Rivaud S, Gouider-Khouja N. et al . Eye movements in parkinsonian syndromes.  Ann Neurol. 1994;  35 420-426
  • 90 Das V, Leigh R J. Visual-vestibular interaction in progressive supranuclear palsy.  Vision Res. 2000;  40 2077-2081
  • 91 Valls-Solé J, Valldeoriola F, Tolosa E, Marti M J. Distinctive abnormalities of facial reflexes in patients with progressive supranuclear palsy.  Brain. 1997;  120 1877-1883
  • 92 Vidailhet M, Rothwell J C, Thompson P D, Lees A J, Marsden C D. The auditory startle response in the Steele-Richardson-Olszewski syndrome and Parkinson's disease.  Brain. 1992;  115 1181-1192
  • 93 Valldeoriola F, Valls-Sole J, Tolosa E, Ventura P J, Nobbe F A, Marti M J. Effects of a startling acoustic stimulus on reaction time in different parkinsonian syndromes.  Neurology. 1998;  51 1315-1320
  • 94 Takeda M, Tachibana H, Okuda B, Kawabata K, Sugita M. Electrophysiological comparison between corticobasal degeneration and progressive supranuclear palsy.  Clin Neurol Neurosurg. 1998;  100 94-98
  • 95 Wang L, Kuroiwa Y, Kamitani T, Li M, Takahashi T, Suzuki Y, Shimamura M, Hasegawa O. Visual event-related potentials in progressive supranuclear palsy, corticobasal degeneration, striatonigral degeneration, and Parkinson's disease.  J Neurol. 2000;  247 356-363
  • 96 Schady W, Dick J P, Sheard A, Crampton S. Central motor conduction studies in hereditary spastic paraplegia.  J Neurol Neurosurg Psychiatry. 1991;  54 775-779
  • 97 Pelosi L, Lanzillo B, Perretti A, Santoro L, Blumhardt L, Caruso G. Motor and somatosensory evoked potentials in hereditary spastic paraplegia.  J Neurol Neurosurg Psychiatry. 1991;  54 1099-1102
  • 98 Claus D, Waddy H M, Harding A E, Murray N M, Thomas P K. Hereditary motor and sensory neuropathies and hereditary spastic paraplegia: a magnetic stimulation study.  Ann Neurol. 1990;  28 43-49
  • 99 Polo J M, Combarros O, Berciano J. Hereditary „pure” spastic paraplegia: a study of nine families.  J Neurol Neurosurg Psychiatry. 1993;  56 175-181
  • 100 Di Lazarro V, Oliviero A, Profice P, Ferrara L, Saturno E, Pilato F, Tonali P. The diagnostic value of motor evoked potentials.  Clin Neurophysiol. 1999;  110 1297-1307
  • 101 Nielsen J E, Krabbe K, Jennum P, Koefoed P, Jensen L N, Fenger K, Eiberg H, Hasholt L, Werdelin L, Sorensen S A. Autosomal dominant pure spastic paraplegia: a clinical, paraclinical, and genetic study.  J Neurol Neurosurg Psychiatry. 1998;  64 61-66
  • 102 Cruz Martínez A, Tejada J. Central motor conduction in hereditary motor and sensory neuropathy and hereditary spastic paraplegia.  Electromyogr clin Neurophysiol. 1999;  39 331-335
  • 103 Nielsen J E, Jennum P, Fenger K, Sorensen S A, Fuglsang-Frederiksen A. Increased intracortical facilitation in patients with autosomal dominant pure spastic paraplegia linked to chromosome 2p.  Eur J Neurol. 2001;  8 335-339
  • 104 Aalfs C M, Koelman J H, Aramideh M, Bour L J, Bruyn R P, Ongerboer de Visser B W. Posterior tibial nerve somatosensory evoked potentials in slowly progressive spastic paraplegia: a comparative study with clinical signs.  J Neurol. 1993;  240 351-356
  • 105 Imai T, Minami R, Kameda K, Ishikawa Y, Okabe M, Nagaoka M, Matsumoto H. Attenuated SEPs with no latency shifts in a family with hereditary spastic paraplegia.  Pediatr Neurol. 1990;  6 13-16
  • 106 Bruyn R P, van Dijk J G, Scheltens P, Boezeman E H, Ongerboer de Visser B W. Clinically silent dysfunction of dorsal columns and dorsal spinocerebellar tracts in hereditary spastic paraparesis.  J Neurol Sci. 1994;  125 206-211
  • 107 Thomas P K, Jefferys J G, Smith I S, Loulakakis D. Spinal somatosensory evoked potentials in hereditary spastic paraplegia.  J Neurol Neurosurg Psychiatry. 1981;  44 243-246
  • 108 Schady W, Sheard A. A quantitative study of sensory function in hereditary spastic paraplegia.  Brain. 1990;  113 709-720
  • 109 Coutinho P, Barros J, Zemmouri R, Guimaraes J, Alves C, Chorao R, Lourenco E, Ribeiro P, Loureiro J L, Santos J V, Hamri A, Paternotte C, Hazan J, Silva M C, Prud'homme J F, Grid D. Clinical heterogeneity of autosomal recessive spastic paraplegias: analysis of 106 patients in 46 families.  Arch Neurol. 1999;  56 943-949
  • 110 Livingstone I R, Mastaglia F L, Edis R, Howe J W. Pattern visual evoked responses in hereditary spastic paraplegia.  J Neurol Neurosurg Psychiatry. 1981;  44 176-178
  • 111 Panegyres P K, Purdie G H, Hamilton-Bruce M A, Rischbieth R H. Familial spastic paraplegia: an electrophysiological study of central sensory conduction pathways.  Clin Exp Neurol. 1991;  28 97-111
  • 112 Tedeschi G, Allocca S, Di Costanzo A, Carlomagno S, Merla F, Petretta V, Toriello A, Tranchino G, Ambrosio G, Bonavita V. Multisystem involvement of the central nervous system in Strumpell's disease. A neurophysiological and neuropsychological study.  J Neurol Sci. 1991;  103 55-60
  • 113 Sawhney I M, Bansal S K, Upadhyay P K, Chopra J S. Evoked potentials in hereditary spastic paraplegia.  Ital J Neurol Sci. 1993;  14 425-428
  • 114 Dürr A, Brice A, Serdary M. et al . The phenotype of „pure” autosomal dominant spastic paraplegia.  Neurology. 1994;  44 1274-1277
  • 115 Orr H T, Chung M Y, Banfi S, Kwiatkowski T J, Servadio A, Beaudet A L, McCall A E, Duvick L A, Ranum L P, Zoghbi H Y. et al . Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1.  Nat Genet. 1993;  4 221-226
  • 116 Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier J M, Weber C, Mandel J L, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats.  Nat Genet. 1996;  14 285-291
  • 117 Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I. et al . CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1.  Nat Genet. 1994;  8 221-228
  • 118 Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert M F, Kaplan C, Ptacek L J. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1.  Am J Hum Genet. 1996;  59 392-399
  • 119 Ranum L P, Schut L J, Lundgren J K, Orr H T, Livingston D M. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11.  Nat Genet. 1994;  8 280-284
  • 120 Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton D W, Amos C, Dobyns W B, Subramony S H, Zoghbi H Y, Lee C C. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel.  Nat Genet. 1997;  15 62-69
  • 121 David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel J L, Brice A. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion.  Nat Genet. 1997;  17 65-70
  • 122 Koob M D, Moseley M L, Schut L J, Benzow K A, Bird T D, Day J W, Ranum L P. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8).  Nat Genet. 1999;  21 379-384
  • 123 Nemes J P, Benzow K A, Moseley M L, Ranum L P, Koob M D. The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1).  Hum Mol Genet. 2000;  9 1543-1451
  • 124 Matsuura T, Yamagata T, Burgess D L, Rasmussen A, Grewal R P, Watase K, Khajavi M, McCall A E, Davis C F, Zu L, Achari M, Pulst S M, Alonso E, Noebels J L, Nelson D L, Zoghbi H Y, Ashizawa T. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10.  Nat Genet. 2000;  26 191-194
  • 125 Worth P F, Giunti P, Gardner-Thorpe C, Dixon P H, Davis M B, Wood N W. Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14 - 21.3.  Am J Hum Genet. 1999;  65 420-426
  • 126 O'Hearn E, Holmes S E, Calvert P C, Ross C A, Margolis R L. SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion.  Neurology. 2001;  56 299-303
  • 127 Herman-Bert A, Stevanin G, Netter J C, Rascol O, Brassat D, Calvas P, Camuzat A, Yuan Q, Schalling M, Durr A, Brice A. Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3 - q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation.  Am J Hum Genet. 2000;  67 229-235
  • 128 Yamashita I, Sasaki H, Yabe I, Fukazawa T, Nogoshi S, Komeichi K, Takada A, Shiraishi K, Takiyama Y, Nishizawa M, Kaneko J, Tanaka H, Tsuji S, Tashiro K. A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter.  Ann Neurol. 2000;  48 156-163
  • 129 Storey E, Gardner R J, Knight M A, Kennerson M L, Tuck R R, Forrest S M, Nicholson G A. A new autosomal dominant pure cerebellar ataxia.  Neurology. 2001;  57 1913-1915
  • 130 Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y, Furuya H, Yamamoto K, Sakai K, Sasazuki T, Kira J. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1 - 24.1.  Neurology. 2001;  57 96-100
  • 131 Verbeek D S, Schelhaas J H, Ippel E F, Beemer F A, Pearson P L, Sinke R J. Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21 - q21.  Hum Genet. 2002;  111 388-393
  • 132 Vuillaume I, Devos D, Schraen-Maschke S, Dina C, Lemainque A, Vasseur F, Bocquillon G, Devos P, Kocinski C, Marzys C, Destee A, Sablonniere B. A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3 - p15.1.  Ann Neurol. 2002;  52 666-670

Prof. Dr. K. Wessel

Neurologische Klinik · Städtisches Klinikum

Salzahlumer Straße 90

38126 Braunschweig

    >