Aktuelle Neurologie 2002; 29(1): 1-11
DOI: 10.1055/s-2002-20000
Neues in der Neurologie
© Georg Thieme Verlag Stuttgart · New York

Rezeptordarstellung mit der Positronen-Emissions-Tomographie

Anwendung in Klinik und ForschungReceptor Imaging with Positron Emission TomographyP.  Bartenstein1
  • 1Klinik und Poliklinik für Nuklearmedizin, Johannes Gutenberg-Universität Mainz
Further Information

Publication History

Publication Date:
08 February 2002 (online)

Zusammenfassung

Dieser Artikel versucht eine Übersicht über den derzeitigen Stand der Forschung und klinischen Anwendung von PET-Untersuchungen mit Radiopharmaka zu geben, die verschiedene Komponenten der Neurotransmission erfassen sowie über Perspektiven zur künftigen Anwendung der Methodik. Der Fokus wird hierbei auf das GABA/Benzodiazepin-System, das dopaminerge System und das Opiatsystem gelegt. Ausführlich dargestellt werden aktuelle klinische und kliniknahe Anwendungsmöglichkeiten sowie Entwicklungen in der grundlagenorientierten Forschung, die für die künftige Anwendung von PET-Studien mit Rezeptorliganden und anderen Radiopharmaka, die komplexe biochemische Prozesse darstellen, von Bedeutung sein können.

Abstract

This article attemps to review the capabilities and accomplishments of radiotracer imaging with positron emission tomography (PET) in measuring various aspects of neurotransmission with focus on the GABA/benzodiazepine-system, the dopaminergic system and the opiate system. Special emphasis is given to the current status of clinical applications for brain PET studies with specific radiopharmaceuticals and to potential future developments for the use of these methods in basic neuroscience.

Literatur

  • 1 Fahey F H. Positron emission tomography instrumentation.  Radiol Clin North Am. 2001;  39 919-929
  • 2 Zeki S, Watson J D, Lueck C J. et al . A direct demonstration of functional specialization in human visual cortex.  J Neurosci. 1991;  11 641-649
  • 3 Weiller C, May A, Limmroth V. et al . Brain stem activation in spontaneous human migraine attacks.  Nature Med. 1995;  1 658-660
  • 4 Zubieta J K, Koeppe R A, Frey K A. et al . Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with [11C]NMPB and PET.  Synapse. 2001;  39 275-287
  • 5 Cagnin A, Brooks D J, Kennedy A M. et al . In-vivo measurement of activated microglia in dementia.  Lancet. 2001;  358 461-467
  • 6 Banati R B, Newcombe J, Gunn R N. et al . The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity.  Brain. 2000;  123 2321-2337
  • 7 Gerhard A, Neumaier B, Elitok E. et al . In vivo imaging of activated microglia using [11C]PK11195 and positron emission tomography in patients after ischemic stroke.  Neuroreport. 2000;  11 2957-2960
  • 8 Halldin C, Gulyas B, Langer O, Farde L. Brain radioligands - state of the art and new trends.  Q J Nucl Med. 2001;  45 139-152
  • 9 Bigliani V, Pilowsky L S. In vivo neuropharmacology of schizophrenia.  Br J Psychiatry. 1999;  38, Suppl 23-33
  • 10 Lassen N A, Bartenstein P A, Lammertsma A A. et al . Benzodiazepine receptor quantification in vivo in humans using [11C]flumazenil and PET: application of the steady-state principle.  J Cereb Blood Flow Metab. 1995;  15 152-165
  • 11 Frost J J, Douglass K H, Mayberg H S. et al . Multicompartmental analysis of [11C]-carfentanil binding to opiate receptors in humans measured by positron emission tomography.  J Cereb Blood Flow Metab. 1989;  9 398-409
  • 12 Carson R E, Lang L, Watabe H. et al . PET evaluation of [(18)F]FCWAY, an analog of the 5-HT(1A) receptor antagonist, WAY-100 635.  Nucl Med Biol. 2000;  27 493-497
  • 13 Logan J, Fowler J S, Volkow N D. et al . Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects.  J Cereb Blood Flow Metab. 1990;  10 740-747
  • 14 Koeppe R A, Holthoff V A, Frey K A. et al . Compartmental analysis of [11C] flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography.  J Cereb Blood Flow Metab. 1991;  11 735-744
  • 15 Cunningham V, Jones T. Spectral analysis of dynamic PET data.  J Cereb Blood Flow Metab. 1993;  13 15-23
  • 16 Lammertsma A A, Hume S P. Simplified reference tissue model for PET receptor studies.  Neuroimage. 1996;  4 153-158
  • 17 Bartenstein P A, Duncan J S, Prevett M C. et al . Investigation of the opioid system in absence seizures with positron emission tomography.  J Neurol Neurosurg Psychiatry. 1993;  56 1295-1302
  • 18 Koepp M J, Gunn R N, Lawrence A D. et al . Evidence for striatal dopamine release during a video game.  Nature. 1998;  393 266-268
  • 19 Gründer G, Siessmeier T, Lange-Asschenfeldt C. et al . PET imaging of benzodiazepine receptors in the human brain with F-18 Fluoroethylflumazenil.  Eur J Nucl Med. 2001;  28 1463-1470
  • 20 Zubieta J K, Smith Y R, Bueller J A. et al . Regional mu opioid receptor regulation of sensory and affective dimensions of pain.  Science. 2001;  293 311-315
  • 21 Willoch F, Tölle T R, Wester H J. et al . Central pain following pontine infarction is associated with changes in opioid receptor binding: a PET study with C-11 diprenorphine.  Am J Neuroradiol. 1999;  20 145-149
  • 22 Olsen R W, Tobin A J. Molecular biology of GABAA-receptors.  FASEB J. 1990;  4 1469-1480
  • 23 DeLorey T M, Olsen R W. γ-Aminobutyric acid-A receptor structure and function.  J Biol Chem. 1992;  267 16747-16750
  • 24 Beer H F, Bläuenstein P A, Hasler P H. et al . In vitro and in vivo evaluation of Iodine-123-Ro 16-0154: A new imaging agent for SPECT investigations of benzodiazepine receptors.  J Nucl Med. 1990;  31 1007-1014
  • 25 Bartenstein P, Ludolph A, Schober O. et al . Benzodiazepine receptors and cerebral blood flow in partial epilepsy.  Eur J Nucl Med. 1991;  18 111-118
  • 26 Maziere M, Hantraye P, Prenant C. et al . Synthesis of ethyl 8-Fluoro-5,6-dihydroxy-5-[11C]methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate (RO 15.1788-11C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography.  Int J Appl Radiat Isot. 1984;  35 973-976
  • 27 Comar D, Maziere M, Godot J M. et al . Visualization of 11C-flunitrazepam displacement in the brain of the life baboon.  Nature. 1979;  280 329-331
  • 28 Frost J J, Wagner H N, Dannals R F. et al . Imaging benzodiazepine receptors in man with 11C-suriclone by positron emission tomography.  Eur J Pharmacol. 1986;  122 381-383
  • 29 Johnström P, Duelfer T, Stone-Elander S. et al . Synthesis of the benzodiazepine-1 antagonist 18F-2-oxoquazepam.  J Label Compound Radiopharm. 1988;  26 334-335
  • 30 Atack J R, Smith A J, Emms F, McKernan R M. Regional differences in the inhibition of mouse in vivo [3H]Ro 15-1788 binding reflect selectivity for alpha 1 versus alpha 2 and alpha 3 subunit-containing GABAA receptors.  Neuropsychopharmacology. 1999;  20 255-262
  • 31 Moerlein S M. N-w-[F-18]Fluoroalcylated flumazenil: potential agents for mapping cerebral benzodiazepine receptors with PET.  J Nucl Med. 1990;  31 902-906
  • 32 Munz F, Ludwig T, Ziegler S. et al .Performance assessment of parallel spectral analysis: Towards a practical performance model for parallel medical applications. Proceedings of the 7th International Conference on High Performance Computing and Networking, Europe Lecture notes in computer science 1539. Berlin; Springer 1999: 430-439
  • 33 Kuwert T, Bartenstein P, Grünwald F. et al . Klinische Wertigkeit der Positronen-Emissions-Tomographie in der Neuromedizin: Positionspapier zu den Ergebnissen einer interdisziplinären Konsensuskonferenz.  Nervenarzt. 1998;  69 1045-1060
  • 34 Arnold S, Berthele A, Drzezga A. et al . Reduction of benzodiazepine receptor binding is related to the seizure onset zone in extratemporal focal cortical dysplasia.  Epilepsia. 2000;  41 818-824
  • 35 Henry T R, Frey K A, Sackellares J C. et al . In vivo cerebral metabolism and central benzodiazepine-receptor binding in temporal lobe epilepsy.  Neurology. 1993;  43 1998-2006
  • 36 Savic I, Thorell J O, Roland P. [11C]flumazenil positron emission tomography visualizes frontal epileptogenic regions.  Epilepsia. 1995;  36 1225-1232
  • 37 Koepp M J, Hammers A, Labbe C. et al . 11C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI.  Neurology. 2000;  54 332-339
  • 38 Koutroumanidis M, Binnie C D, Elwes R D. et al . Interictal regional slow activity in temporal lobe epilepsy correlates with lateral temporal hypometabolism as imaged with 18FDG PET: neurophysiological and metabolic implications.  J Neurol Neurosurg Psychiatry. 1998;  65 170-176
  • 39 Sadzot B, Debets R M, Delfiore G. et al . C-11-Flumazenil Positron emission tomography: An in vivo marker of neuronal loss in temporal lobe epilepsy.  Epilepsia. 1994;  35, Suppl 7 S28
  • 40 Hammers A, Koepp M J, Richardson M P. et al . Central benzodiazepine receptors in malformations of cortical development: A quantitative study.  Brain. 2001;  124 1555-1565
  • 41 Hammers A, Koepp M J, Labbe C. et al . Neocortical abnormalities of [11C]-flumazenil PET in mesial temporal lobe epilepsy.  Neurology. 2001;  56 897-906
  • 42 Winkler P A, Herzog C, Henkel A. et al . Nichtinvasives Protokoll für die epilepsiechirurgische Behandlung fokaler Epilepsien.  Nervenarzt. 1999;  70 1088-1093
  • 43 Juhasz C, Chugani D C, Muzik O. et al . Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome.  Neurology. 2001;  56 1650-1658
  • 44 Bartenstein P, Grünwald F, Kuwert T. et al . Klinische Anwendungen der Single-Photon-Emissionstomographie in der Neuromedizin 1: Neuroonkologie, Epilepsien, Basalganglienerkrankungen, zerebrovaskuläre Erkrankungen.  Nuklearmedizin. 2000;  39 180-195
  • 45 Odano I, Miyashita K, Minoshima S. et al . A potential use of a 123I-labelled benzodiazepine receptor antagonist as a predictor of neuronal cell viability: comparisons with 14C-labelled 2-deoxyglucose autoradiography and histopathological examination.  Nucl Med Commun. 1995;  16 443-446
  • 46 Heiss W D, Kracht L, Grond M. et al . Early C-11 flumazenil/H2O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy.  Stroke. 2000;  31 366-369
  • 47 Lloyd C M, Richardson M P, Brooks D J. et al . Extramotor involvement in ALS: PET studies with the GABA(A) ligand C-11 flumazenil.  Brain. 2000;  123 2289-2296
  • 48 Foster N L, Minoshima S, Johanns J. et al . PET measures of benzodiazepine receptors in prograssive supranuclera palsy.  Neurology. 2000;  54 1768-1773
  • 49 Macdonald G A, Frey K A, Agranoff B W. et al . Cerebral benzodiazepine receptor binding in vivo in patients with recurrent hepathic encephalopathy.  Hepatology. 1997;  26 277-282
  • 50 Jalan R, Turjanski N, Taylor Robinson S D. et al .Increased availability of central benzodiazepine receptors in patients with chronic hepatic encephalopathy and alcohol related cirrhosis. 
  • 51 Malizia A L, Cunningham V J, Bell C J. et al . Decreased brain GABA(A)-benzodiazepine receptor binding in panic disorder: preliminary results from a quantitative PET-study.  Arch Gen Psychiatry. 1998;  55 715-720
  • 52 Abi-Dargham A, Krystal J H, Anjilvel S. et al . Alterations of benzodiazepine receptors in type II alcoholic subjects measured with SPECT and I-123 iomazenil.  Am J Psychiatry. 1998;  155 1550-1555
  • 53 Garnett E S, Firnau G, Chan P K. et al . [18F]fluoro-dopa, an analogue of dopa, and its use in direct external measurements of storage, degradation, and turnover of intracerebral dopamine.  Proc Natl Acad Sci USA. 1978;  75 464-467
  • 54 Brooks D J. Morphological and functional imaging studies on the diagnosis and progression of Parkinson's disease.  J Neurol. 2000;  247, Suppl 2 II11-18
  • 55 Melega W P, Luxen A, Perlmutter M M. et al . Comparative in vivo metabolism of 6-[18F]fluoro-L-dopa and [3H]L-dopa in rats.  Biochem Pharmacol. 1990;  15, 39 1853-1860
  • 56 Heiss W D, Würker M. Möglichkeiten und Grenzen funktioneller bildgebender Verfahren beim Parkinson-Syndrom.  Nervenarzt. 1999;  70, Suppl 1 S2-10
  • 57 Tatsch K. Imaging of the dopaminergic system in parkinsonism with SPET.  Nucl Med Commun. 2001;  22 819-827
  • 58 Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review.  J Cereb Blood Flow Metab. 2000;  20 423-451
  • 59 Mukherjee J, Yang Z Y, Brown T. et al . Preliminary assessment of extrastriatal dopamine D-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, 18F-fallypride.  Nucl Med Biol. 1999;  26 519-527
  • 60 Gründer G, Siessmeier T, Piel M. et al . Spectral analysis of [18F]desmethoxyfallypride binding to human D2-like dopamine receptors.  Neuroimage. 2000;  11 S33
  • 61 Coenen H H, Laufer P, Stöcklin G. et al . 3-N-(2-[18F]-fluoroethyl)-spiperone: a novel ligand for cerebral dopamine receptor studies with PET.  Life Sci. 1987;  40 81-88
  • 62 Fowler J S, Volkow N D, Wang G J. et al . Inhibition of monoamine oxidase B in the brains of smokers.  Nature. 1996;  379 733-736
  • 63 Piccini P, Burn D J, Ceravolo R. et al . The role of inheritance in sporadic Parkinson's disease: evidence from a longitudinal study of dopaminergic function in twins.  Ann Neurol. 1999;  45 577-582
  • 64 Brooks D J, Ibanez V, Sawle G V. et al . Differing patterns of striatal 18F-dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy.  Ann Neurol. 1990;  28 547-555
  • 65 Barker R A, Dunnett S B. Functional integration of neural grafts in Parkinson's disease.  Nat Neurosci. 1999;  2 1047-1048
  • 66 Antonini A, Leenders K L, Vontobel P. et al . Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson's disease.  Brain. 1997;  120 2187-2195
  • 67 Perlmutter J S, Kilbourn M R, Raichle M E, Welch M J. MPTP-induced up-regulation of in vivo dopaminergic radioligand-receptor binding in humans.  Neurology. 1987;  37 1575-1579
  • 68 Verhoeff N P. Radiotracer imaging of dopaminergic transmission in neuropsychiatric disorders.  Psychopharmacology. 1999;  147 217-249
  • 69 Breier A, Su T P, Saunders R. et al . Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method.  Proc Natl Acad Sci USA. 1997;  94 2569-2574
  • 70 Volkow N D, Wang G J, Fowler J S. et al . Imaging endogenous dopamine competition with [11C]raclopride in the human brain.  Synapse. 1994;  16 255-262
  • 71 Koepp M J, Duncan J S. PET: Opiate receptor mapping. In: Henry TR, Duncan JS, Berkovic SF (eds) Functional imaging in the epilepsies. Philadelphia; Lippincott Williams & Wilkins 2000: 145-156
  • 72 Pfeiffer A, Pasi A, Mehraein P, Herz A. Opiate receptor binding sites in human brain.  Brain Res. 1982;  248 87-96
  • 73 Pasternak G W, Wood P J. Multiple Mu opiate receptors.  Life Sci. 1986;  38 1889-1898
  • 74 Chavkin C, Shoemaker W J, McGinty J F. et al . Characterization of the prodynorphin and proenkephalin neuropeptide systems in rat hippocampus.  J Neurosci. 1985;  5 808-816
  • 75 Zieglgänsberger W, French E D, Siggins G R, Bloom F E. Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons.  Science. 1979;  205 415-417
  • 76 Jones A K, Luthra S K, Maziere B. et al . Regional cerebral opioid receptor studies with [11C]diprenorphine in normal volunteers.  J Neurosci Methods. 1988;  23 121-129
  • 77 Frost J J, Mayberg H S, Fisher R S. et al . Mu-opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy.  Ann Neurol. 1988;  23 231-237
  • 78 Wester H J, Willoch F, Tölle T R. et al . 6-O-(2-[18F]fluoroethyl)-6-O-desmethyldiprenorphine ([18F]DPN): synthesis, biologic evaluation, and comparison with [11C]DPN in humans.  J Nucl Med. 2000;  41 1279-1286
  • 79 Lever J R, Ilgin N, Musachio J L. et al . Autoradiographic and SPECT imaging of cerebral opioid receptors with an iodine-123 labeled analogue of diprenorphine.  Synapse. 1998;  29 172-182
  • 80 Dannals R F, Ravert H T, Frost J J. et al . Radiosynthesis of an opiate receptor binding radiotracer: [11C]Carfentanil.  Int J Appl Radiat Isot. 1985;  36 303-306
  • 81 Madar I, Lever J R, Kinter C M. et al . Imaging of delta opioid receptors in human brain by N1'-([11C]methyl)naltrindole and PET.  Synapse. 1996;  24 19-28
  • 82 Theodore W H, Carson R E, Andreasen P. et al . PET imaging of opiate receptor binding in human epilepsy using [18F]cyclofoxy.  Epilepsy Res. 1992;  13 129-139
  • 83 Smith J S, Zubieta J K, Price J C. et al . Quantification of delta-opioid receptors in human brain with N1'-([11C]methyl) naltrindole and positron emission tomography.  J Cereb Blood Flow Metab. 1999;  19 956-966
  • 84 Frenk H. Pro- and anticonvulsant actions of morphine and the endogenous opioids: involvement and interactions aof multiple opiate and non-opiate systems.  Brain Res Rev. 1983;  6 197-210
  • 85 Kelsley J E, Belluzi J D. Endorphin mediation of post-ictal effects of kindled seizures in rats.  Brain Res. 1982;  253 337-340
  • 86 Savage D D, Mills S A, Jobe P C, Reigel C E. Elevation of naloxone-sensitive 3H-dihydromorphine binding in hippocampal formation of genetically epilepsy-prone rats.  Life Sci. 1988;  43 239-246
  • 87 Mayberg H S, Sadzot B, Meltzer C C. et al . Quantification of mu and non-mu opiate receptors in temporal lobe epilepsy using positron emission tomography.  Ann Neurol. 1991;  30 3-11
  • 88 Bartenstein P A, Prevett M C, Duncan J S. et al . Quantification of opiate receptors in two patients with mesiobasal temporal lobe epilepsy, before and after selective amygdalohippocampectomy, using positron emission tomography.  Epilepsy Res. 1994;  18 119-125
  • 89 Madar I, Lesser R P, Krauss G. et al . Imaging of delta- and mu-opioid receptors in temporal lobe epilepsy by positron emission tomography.  Ann Neurol. 1997;  41 358-367
  • 90 Urca G, Frenk H, Liebeskind J C. et al . Morphine and enkephalin - analgesic and epileptic properties.  Science. 1977;  197 83-86
  • 91 Albertson T E, Joy R M, Stark L G. Modification of kindled amygdaloid seizures by opiate agonists and antagonists.  J Pharmacol Exp Ther. 1984;  228 620-627
  • 92 Koepp M J, Richardson M P, Brooks D J, Duncan J S. Focal cortical release of endogenous opioids during reading-induced seizures.  Lancet. 1998;  352 952-955
  • 93 Treede R D, Kenshalo D R, Gracely R H, Jones A K. The cortical representation of pain.  Pain. 1999;  79 105-111
  • 94 Jones A K, Liyi Q, Cunningham V V. et al . Endogenous opiate response to pain in rheumatoid arthritis and cortical and subcortical response to pain in normal volunteers using positron emission tomography.  Int J Clin Pharmacol Res. 1991;  11 261-266
  • 95 Jones A K, Kitchen N D, Watabe H. et al . Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography.  J Cereb Blood Flow Metab. 1999;  19 803-808
  • 96 Carter B D, Medzihradsky F. Receptor mechanisms of opioid tolerance in SH-SY5Y human neural cells.  Mol Pharmacol. 1993;  43 465-473
  • 97 Uhl G R, Sora I, Wang Z. The mu opiate receptor as a candidate gene for pain: polymorphisms, variations in expression, nociception, and opiate responses.  Proc Natl Acad Sci USA. 1999;  96 7752-7755
  • 98 Weeks R A, Cunningham V J, Piccini P. et al . 11C-diprenorphine binding in Huntington's disease: a comparison of region of interest analysis with statistical parametric mapping.  J Cereb Blood Flow Metab. 1997;  17 943-949
  • 99 Piccini P, Weeks R A, Brooks D J. Alterations in opioid receptor binding in Parkinson's disease patients with levodopa-induced dyskinesias.  Ann Neurol. 1997;  42 720-726
  • 100 Cohen R M, Andreason P J, Doudet D J. et al . Opiate receptor avidity and cerebral blood flow in Alzheimer's disease.  J Neurol Sci. 1997;  148 171-180
  • 101 Albin R L, Reiner A, Anderson K D. et al . Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington's disease.  Ann Neurol. 1992;  31 425-430
  • 102 Turjanski N, Weeks R, Dolan R. et al . Striatal D1 and D2 receptor binding in patients with Huntington's disease and other choreas. A PET study.  Brain. 1995;  118 689-696
  • 103 Kling M A, Carson R E, Borg L. et al . Opioid receptor imaging with positron emission tomography and [(18)F]cyclofoxy in long-term, methadone-treated former heroin addicts.  J Pharmacol Exp Ther. 2000;  295 1070-1076
  • 104 Heinz A, Reimold M, Hermann D. et al . Craving and relapse are associated with µ-opioid availability in alcoholics a C-11 carfentanil study.  J Nucl Med. 2001;  42 107
  • 105 Willoch F, Schütz C, Wester H J. et al . Opioid receptor binding changes in alcohol dependent males during detoxification and in comparison to control.  J Nucl Med. 1999;  40 111
  • 106 Zubieta J K, Gorelick D A, Stauffer R. et al . Increased mu opioid receptor binding detected by PET in cocaine-dependent man is associated with cocaine craving.  Nature Med. 1996;  2 1225-1229
  • 107 Zubieta J K, Dannals R F, Frost J J. Gender and age influences on human brain mu-opioid receptor binding measured by PET.  Am J Psychiatry. 1999;  156 842-848
  • 108 Smith Y R, Zubieta J K, del Carmen M G. et al . Brain opioid receptor measurements by positron emission tomography in normal cycling women: relationship to luteinizing hormone pulsatility and gonadal steroid hormones.  J Clin Endocrinol Metab. 1998;  83 4498-4505
  • 109 Stöcklin G L. Is there a future for clinical fluorine-18 radiopharmaceuticals (excluding FDG)?.  Eur J Nucl Med. 1998;  25 1612-1616

Prof. Dr. med. P. Bartenstein

Klinik und Poliklinik für Nuklearmedizin · Johannes Gutenberg-Universität Mainz

Langenbeckstraße 1

55101 Mainz

Email: Bartenstein@nuklear.klinik.uni-mainz.de

    >