Zusammenfassung
Fragestellung
Bis heute ist es trotz intensiver Forschung und Überwachung nicht gelungen, die Rate
an hirngeschädigten Neugeborenen entscheidend zu senken. Nach heutigem Kenntnisstand
sind ca. 90 % der fetalen Hirnschäden Folge antepartaler Ereignisse. Demzufolge können
auch nur 10 % durch eine intensivierte Überwachung unter der Geburt vermieden werden.
Die Detektion einer antepartalen zerebralen Schädigung ist ein seltenes Ereignis,
wobei über das Schädigungsausmaß nur Vermutungen angestellt werden können. Eine Überwachung
der neuronalen Integrität des heranwachsenden Feten ist bis heute nicht möglich. Es
ist unklar, wann und bei welchen Feten es zu einer intrauterinen Hirnschädigung kommt
und welche Bedeutung diese für die spätere kindliche Entwicklung haben wird. In dieser
Publikation wird ein neu entwickeltes Gerät vorgestellt, mit dem intrauterin die fetale
neuronale Funktion erfasst werden kann.
Methodik und Ergebnisse
Mit einem neuen diagnostischen Ansatz, der Aufzeichnung des fetalen Magnetenzephalogrammes
(fMEG), kann erstmals mit einem speziell für die Erfordernisse der Geburtshilfe entwickelten
System eine Aussage zur fetalen Hirnfunktion getroffen werden. Mittels 151 Messsensoren
ist es möglich, die biomagnetischen Signale, die von Mutter und Fetus erzeugt werden,
aufzunehmen und aus diesen das fMEG zu extrahieren. Die Geräteentwicklung und -evaluation
erfolgt zur Zeit in Little Rock, Arkansas, USA in Kooperation mit dem Institut für
medizinische Psychologie und Verhaltensneurobiologie und der Frauenklinik der Universität
Tübingen. Das mit diesem Gerät registrierte Signal besteht neben dem fetalen neuronalen
Signal aus mehreren Komponenten (z. B. maternales Kardiogramm, fetales Kardiogramm),
die aus dem Rohdatenmaterial extrahiert werden müssen. Es werden erste Ergebnisse
und sich daraus ergebende Fragestellungen präsentiert.
Schlussfolgerung/Ausblick
Mit dem fMEG könnte ein Einblick in die Entwicklung der zerebralen Funktion während
der fetalen intrauterinen Entwicklung gewonnen werden. Neue zukunftweisende Überwachungskriterien
könnten erstmals die Sicherung der normalen zerebralen Entwicklung gewährleisten und
gleichzeitig einen neuen Parameter für die Überwachung von zerebral bedrohten Feten
darstellen.
Abstract
Purpose
Intensive research and subpartal surveillance have failed to reduce the rate of newborns
with cerebral handicaps. The evidence indicates that about 90 % of cerebral handicaps
are due to antepartal events and thus that only 10 % could potentially be avoided
by better surveillance during labor. Cerebral injury is rarely detected prenatally
and its impact difficult to predict because we do not have a way to assess neuronal
function in the developing fetus. We describe a new diagnostic approach which may
provide more information on the cerebral well-being of the fetus.
Methods and Results
A system was developed to record fetal magnetencephalographic signals and thus detect
fetal brain function. An array of 151 sensors was designed to fit to the pregnant
body and record the fetal magnetic encephalogram. We present initial results and discuss
arising questions.
Conclusion
The early data suggest that fetal magnetencephalography can provide insights into
the fetal neuronal development and well-being during pregnancy.
Schlüsselwörter
Fetale Überwachung - fetales MEG - Magnetenzephalogramm - Hirnfunktion
Key words
Fetal surveillance - Fetal MEG - Magnetencephalogram - Brain function
Literatur
1 Bendat J S, Piersol A G. Random Data: Analysis and Measurement Procedures. 3rd ed. New
York; John Wiley and Sons, Inc 2000
2
Beverely D W, Smith I S, Beesley P, Jones J, Rhodes N.
Relationship of cranial ultrasonography, visual and auditory evoked responses with
neurodevelopmental outcome.
Dev Med Child Neurol.
1990;
32
210-222
3
Blum T, Saling E, Bauer R.
First magnetoencephalographic recordings of the brain activity of the human fetus.
Br J Obstet Gynaecol.
1985;
92
1224-1229
4 Clancy R R.
Electroencephalography in the premature and full-term infant. Polin RA, Fox NW Fetal and Neonatal Physiology. Philadelphia; WB Saunders Co 1992:
1540-1559
5
Connolly M B, Jan J E, Cochrane D D.
Rapid recovery from cortical visual impairment following correction of prolonged shunt
malfunction in congenital hydrocephalus.
Archives of Neurology.
1991;
48
156-957
6
DeCasper A J, Fifer W P.
Of human bonding: Newborns prefer their mothers voices.
Science.
1980;
208
1174-1176
7
DeCasper A J, Spence M J.
Prenatal maternal speech influences newborn's perception of speech sounds.
Infant Behavior and Development.
1986;
9
133-150
8
Devlin B, Daniels M, Roeder K.
The heritability of IQ.
Nature.
1997;
388
468-471
9
Diaz F, Zuron M.
Auditory evoked potentials in Down's syndrome.
Electroencephalogr Clin Neurophysio.
1995;
96
526-537
10
Djelmis J, Dranzancic A, Durrigl V, Ivansenic M.
The effect of fetal hypoxia and acidosis on the changes in fetal electroencephalogram
during labor.
Am J Perinatol.
1988;
5
177-185
11
Dustman R E, Callner D A.
Cortical evoked responses and response decrement in nonretarded and Down's syndrome
individuals.
Amer J Mental Deficiency.
1979;
83
391-397
12
Ehle A, Sklar F.
Visual evoked potentials in infants with hydrocephalus.
Neurology.
1979;
29
1541-1544
13
Eken P, Nieuwenhuizen O, Van Der Graaf Y, Schalij-Delfos N E, De Vries L S.
Relation between neonatal cranial ultrasound abnormalities and cerebral visual impairment
in infancy.
Dev Med Child Neurol.
1994;
36
3-15
14
Eswaran H, Lowery C L, Robinson S E, Wilson J D, Cheyne D, McKenzie D.
Challenges of recording human fetal auditory evoked response using magnetencephalography.
J Maternal-Fetal Med.
2000;
9
1-5
15
Freeman J M.
Prenatal and Perinatal Factors Associated with Brain Disorders.
National Institutes of Health Publication Bethesda.
1985;
85
1149
16
Goelz R, Pinkert B, Meisner C, Speer C P.
Neonatal mortality, ICH and risk factors from 1984 to 1996.
Pediatric Research.
1998;
44
444
17
Groß W, Kähler C, Koch K, Nowak H, Michels M, Seewald H J.
Akustisch ausgelöste hirnmagnetische Aktivitäten bei normotrophen und wachstumsretardierten
Feten im III. Trimenon der Schwangerschaft.
Z Geburtsh Neonatol.
1999;
203
69-72
18
Hall J G.
On the neuropathologic changes in the central nervous system following neonatal asphyxia
- with special reference to the auditory system in man.
Acta Otolaryngol.
1964;
188 (Suppl)
331-339
19
Hykin J, Moore R, Duncan K, Clare S, Baker P, Johnson I, Bowtell R, Mansfield P, Gowland P.
Fetal brain activity demonstrated by functional magnetic resonance imaging.
Lancet.
1999;
354
645-646
20
Jensen O H.
Fetal heart rate response to a controlled sound stimulus as a measure of fetal well-being.
Acta Obstet Gynecol Scand.
1984;
63
97-101
21
Kok H J, den Ouden A L, Verloove Vanhorick S P, Brand R.
Outcome of very preterm small for gestational age infants: the first nine years of
life.
Br J Obstet Gynaecol.
1998;
105
162-168
22
Krägeloh-Mann I, Hagberg B, Petersen D, Riethmüller J, Gut E, Michaelis R.
Bilateral spastic cerebral palsy - pathogenetic aspects from MRI.
Neuropediatrics.
1992;
23
46-48
23 Krägeloh-Mann I, Niemann G, Toft P, Andresen J.
Morphologic correlates of learning disabilities in cerebral palsy with/without persistent
deficits. Velickovic Perat M New Developments in Child Neurology. The Presentations of the
VIII International Child Neurology Congress. Bologna; Monduzzi Editore 1998: 647-650
24
Krägeloh-Mann I, Petersen D, Hagberg G, Vollmer B, Hagberg B, Michaelis R.
Bilateral spastic cerebral palsy - MRI pathology and origin. Analysis from a representative
series of 56 cases.
Dev Med Child Neurol.
1995;
38
379-397
25
Krägeloh-Mann I, Toft P, Lunding J, Andresen J, Pryds O, Lou H C.
Brain lesions in preterms - origin, consequences, and compensation.
Acta Paediatr.
1999;
88
897-908
26
Kuenzle C, Baenzinger O, Martin E, Thun-Hohenstein L, Steinlin M, Good M, Fanconi S,
Boltshauser E, Largo R H.
Prognostic value of early MR Imaging in term infants with severe perinatal asphyxia.
Neuropediatrics.
1994;
25
191-200
27
Kurtzberg D, Hilpert P L, Kreutzer J A, Vaughan H G.
Differential maturation of cortical auditory evoked potentials to speech sounds in
normal fullterm and very low-birthweight infants.
Dev Med Child Neurol.
1984;
26
466-475
28
Lengle J M, Chen M, Wakai R T.
Improved neuromagnetic detection of fetal and neonatal auditory evoked responses.
Clin Neurophysiol.
2001;
112
785-792
29
Lindsey D B.
Head and brain potentials of human fetuses in utero.
Am J Psychol.
1942;
55
412-418
30
Lipitz S, Yagel S, Malinger G, Meizner I, Zalel Y, Achiron R.
Outcome of fetuses with isolated borderline unilateral ventriculomegaly diagnosed
at mid-gestation.
Ultrasound in Obstet Gynecol.
1998;
12
23-26
31
Majnemer A, Rosenblatt B.
Evoked-potentials as predictors of outcome in neonatal intensive-care unit survivors:
review of the literature.
Pediatric Neurology.
1996;
14
189-195
32
McSherry J W, Walters C L, Horbar J D.
Acute visual evoked potential changes in hydrocephalus.
Electroencephalog Clin Neurophysiol.
1982;
52
331-333
33
Moore R J, Vadeyar S, Fulford J, Tyler D J, Gribben C, Baker P N, James D, Gowland P A.
Antenatal determination of fetal brain acuvity in response to an acoustic stimulus
using functional magnetic resonance imaging.
Human Brain Mapping.
2001;
12
94-99
34
Placzek M, Mushin J, Dubowitz L MS.
Maturation of the visual evoked response and its correlation with visual acuity in
neurologically normal and abnormal preterm infants.
Dev Med Child Neurol.
1985;
27
448
35
Preißl H, Eswaran H, Murphy P, Wilson J D, Robinson S E, Vrba J, Fife A A, Tilotson M,
Lowery C L.
Recording of temporal-spatial biomagnetic signals over the whole maternal abdomen
with SARA - auditory fetal brain responses.
Biomedizinische Technik.
2001;
46 (Suppl. II)
191-193
36
Querleu D, Boutteville C, Renard X, Grepin G.
Sound stimulation test and fetal well-being.
Am J Obstet Gynecol.
1985;
151
829-830
37
Resta M.
Magnetic resonance imaging of normal and pathologic fetal brain.
Child Nerv Syst.
1998;
14
151-154
38 Richardson S A, Koller H.
Mental retardation. Pless IB The Epidemiology of Childhood Disorders. New York; Oxford University Press
1994: 277-230
39
Rosen K G, Luzietti R.
Intrapartum fetal monitoring: its basis and current developments.
Prenatal and Neonatal Medicine.
2000;
5
155-168
40
Rosen M G, Scibetta J J.
The human fetal electroencephalogram. I. An electrode for continuous recording during
labor.
Am J Obstet Gynecol.
1969;
104
1057-1060
41
Schmidt W, Boos R, Gnirs L.
Fetal behavioral states and controlled sound stimulation.
Early Human Dev.
1985;
12
145-153
42
Serafini P, Lindsay M BJ, Nagey D A, Pupkin M J, Tseng P, Crenshaw C.
Antepartum fetal heart rate response to sound stimulation: The acoustic stimulation
test.
Am J Obstet Gynecol.
1984;
148
41
43
Sherer D M, Onyeije C I.
Prenatal ultrasonographic diagnosis of fetal intracranial tumors: A review.
Am J Perinat.
1998;
15
319-328
44
Sjostrom A, Uvebrant P, Roos A.
The light flash evoked potential as a possible indicator of increased intracranial
pressure in hydrocephalus.
Childs Nervous System.
1995;
11
381-387
45
Sklar F H, Ehle A L, Clark W K.
Visual evoked potentials: a noninvasive technique to monitor patients with shunted
hydrocephalus.
Neurosurgery.
1979;
4
529-534
46
Smith C V, Phelan J P, Paul R H, Broussard P.
Fetal acoustical stimulation testing. A reproductive experience with the fetal acoustic
stimulation test.
Am J Obstet Gynecol.
1985;
153
567-569
47
Smith C V, Phelan J P, Platt L D, Broussard P, Paul R H.
Fetal acoustic stimulation testing II. A randomized clinical comparison with the nonstress
test.
Am J Obstet Gynecol.
1986;
155
131-134
48
Sonigo P C, Rypens F F, Carteret M, Delezoide A L, Brunelle F O.
MR imaging of fetal cerebral anomalies.
Pediatr Radiol.
1998;
28
212-222
49
Stewart A L, Rifkin L, Amess P N, Kirkbride V, Townsend J P, Miller D H, Lewis S W,
Kingsley D PE, Moseley I F, Foster O, Murray R M.
Brain structure and neurocognitive and behavioural function in adolescents who were
born very preterm.
Lancet.
1999;
353
1653-1657
50
Taylor M J, Murphy W J, Whyte H E.
Prognostic reliability of somatosensory and visual evoked potentials of asphyxiated
term infants.
Dev Med Child Neurol.
1992;
34
507-515
51
Tharp B, Cukier F, Monod N.
The prognostic value of the electroencephalogram in premature infants.
Electroencephalogr Clin Neurophysiol.
1981;
51
219-236
52
Uhlen I, Borg E, Persson H, Spehns K E.
Topography of auditory evoked long-latency potentials in severe language impairements:
the N1 componet.
Electroencephal Clin Neurophysiol.
1996;
32
210-222
53
Vergani P, Ghidini A, Strobelt N, Locatelli A, Mariani S, Bertalero C.
Prognostic indicators in the prenatal diagnosis of agenesis of corpus callosum.
Am J Obstet Gynecol.
1994;
170
753-758
54
Whyte H.
Visual evoked potentials in neonates following asphyxia.
Clin Perinatol.
1993;
20
451-461
55
Whyte H E, Pearce J M, Taylor M J.
Changes in the VEP in preterm neonates with arousal states, as assessed by EEG monitoring.
Electroencephalogr Clin Neurophysiol.
1987;
68
223-225
56
Yoon B H, Jun J K, Romero R, Park K H, Gomez R, Choi J H. et al .
Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1β, and tumor necrosis
factor-α), neonatal brain white matter lesions, and cerebral palsy.
Am J Obstet Gynecol.
1997;
177
19-26
57
Zubick H H, Fried M P, Feudo P, Epstein M F, Strome M.
Normal neonatal brainstem auditory evoked potentials.
Ann Otol Rhinol Laryngol.
1982;
91
485-488
Dr. Burkhard Schauf
Frauenklinik Tübingen
Schleichstr. 4
72076 Tübingen
Email: burkhard.schauf@med.uni-tuebingen.de