Plant Biol (Stuttg) 2001; 3(4): 426-436
DOI: 10.1055/s-2001-16460
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Interspecific Variation in RGR and the Underlying Traits among 24 Grass Species Grown in Full Daylight

P. Ryser, S. Wahl
  • Geobotanisches Institut ETH Zürich, Zürich, Switzerland
Further Information

Publication History

February 11, 2000

May 5, 2001

Publication Date:
16 August 2001 (online)

Abstract

A growth analysis was conducted with 24 central European grass species in full daylight to test whether traits underlying interspecific variation in relative growth rate (RGR) are the same in full daylight as they are at lower light, and whether this depends on the ecological characteristics of the studied species, i.e., their requirements with respect to nutrient and light availability.

In contrast to studies with herbaceous species at lower light, net assimilation rate (NAR) contributed more than leaf area ratio (LAR) or specific leaf area (SLA) to interspecific variation in RGR. This was associated with a larger interspecific variation in NAR than found in experiments with lower light. Without the two most shade-tolerant species, however, the contribution of LAR and its components to interspecific variation in RGR was similar or even higher than that of NAR.

Leaf dry matter content correlated negatively with RGR and was the only component of LAR contributing in a similar manner to variation in LAR and RGR. There was a positive correlation between NAR and biomass allocation to roots, which may be a result of nutrient-limited growth. RGR correlated negatively with biomass allocation to leaves. Leaf thickness did not correlate with RGR, as the positive effect of thin leaves was counterbalanced by their lower NAR.

Low inherent RGR was associated with species from nutrient-poor or shady habitats. Different components constrained growth for these two groups of species, those from nutrient-poor habitats having high leaf dry matter content, while those from shady habitats had thin leaves with low NAR.

References

  • 01 Aerts,  R., and Van der Peijl,  M. J.. (1993);  A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats.  Oikos. 66 144-147
  • 02 Bassow,  S. L., and Bazzaz,  F A.. (1997);  Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest.  Oecologia. 109 507-515
  • 03 Berendse,  F., and Aerts,  R.. (1987);  Nitrogen-use-efficiency: A biologically meaningful definition.  Functional Ecology. 1 293-296
  • 04 Berendse,  F., and Elberse,  W. T.. (1990) Competition and nutrient availability in heathland and grassland ecosystems. Perspectives on plant competition. Tilman, D. and Grace, J. B., eds San Diego; Academic Press pp. 93-116
  • 05 Bradshaw,  A. D.,, Chadwick,  M. J.,, Jowett,  D.,, and Snaydon,  R. W.. (1964);  Experimental investigations into the mineral nutrition of several grass species. Part IV. Nitrogen level.  Journal of Ecology. 52 665-676
  • 06 Eckstein,  R. L.,, Karlsson,  P. S.,, and Weih,  M.. (1999);  Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions.  New Phytologist. 143 177-189
  • 07 Elberse,  W. Th., and Berendse,  F.. (1993);  A comparative study of the growth and morphology of eight grass species from habitats with different nutrient availabilities.  Functional Ecology. 7 223-229
  • 08 Ellenberg,  H.,, Weber,  H. E.,, Düll,  R.,, Wirth,  V.,, Werner,  W.,, and Paulissen,  D.. (1992);  Zeigerwerte von Pflanzen in Mitteleuropa.  Scripta Geobotanica. 18 1-258
  • 09 Escudero,  A.,, Del Arco,  J. M.,, Sanz,  I. C.,, and Ayala,  J.. (1992);  Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species.  Oecologia. 90 80-87
  • 10 Evans,  G. C.. (1972) The quantitative analysis of plant growth. Oxford; Blackwell Scientific Publications
  • 11 Evans,  J. R.. (1998) Photosynthetic characteristics of fast- and slow-growing species. Inherent variation in plant growth. Lambers, H., Poorter, H. and Van Vuuren, M. M. I., eds. Leiden; Backhuys Publishers pp. 101-119
  • 12 Garnier,  E.. (1992);  Growth analysis of congeneric annual and perennial grass species.  Journal of Ecology. 80 665-675
  • 13 Garnier,  E., and Laurent,  G.. (1994);  Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species.  New Phytologist. 128 725-736
  • 14 Grime,  J. P.. (1979) Plant strategies and vegetation processes. Chichester; Wiley
  • 15 Grime,  J. P., and Hunt,  R.. (1975);  Relative growth-rate: its range and adaptive significance in a local flora.  Journal of Ecology. 63 393-422
  • 16 Hunt,  R., and Cornelissen,  J. H. C.. (1997);  Components of relative growth rate and their interrelations in 59 temperate plant species.  New Phytologist. 135 395-417
  • 17 Lambers,  H., and Poorter,  H.. (1992);  Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences.  Advances in Ecological Research. 23 187-261
  • 18 Landolt,  E.. (1977);  Ökologische Zeigerwerte zur Schweizer Flora.  Veröffentlichungen des Geobotanischen Institutes ETH Zürich. 64 1-208
  • 19 Larcher,  W.. (1994) Oekophysiologie der Pflanzen, 5. Auflage. Stuttgart; Verlag Eugen Ulmer
  • 20 Lauber,  K., and Wagner,  G.. (1996) Flora Helvetica. Bern; Paul Haupt Verlag
  • 21 Mahmoud,  A., and Grime,  J. P.. (1976);  An analysis of competitive ability in three perennial grasses.  New Phytologist. 77 431-435
  • 22 Meziane,  D., and Shipley,  B.. (1999 a);  Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply.  Functional Ecology. 13 611-622
  • 23 Meziane,  D., and Shipley,  B.. (1999 b);  Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability.  Plant, Cell and Environment. 22 447-459
  • 24 Niemann,  G. J.,, Pureveen,  J. B. M.,, Eijkel,  G. B.,, Poorter,  H.,, and Boon,  J. J.. (1992);  Differences in relative growth rate in 11 grasses correlate with differences in chemical composition as determined by pyrolysis mass spectrometry.  Oecologia. 89 567-573
  • 25 Niinemets,  Ü.. (1999);  Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants.  New Phytologist. 144 35-47
  • 26 Poorter,  H., and Bergkotte,  M.. (1992);  Chemical composition of 24 wild species differing in relative growth rate.  Plant, Cell and Environment. 15 221-229
  • 27 Poorter,  H., and Remkes,  C.. (1990);  Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate.  Oecologia. 83 553-559
  • 28 Poorter,  H.,, Van de Vijver,  C. A. D. M.,, Boot,  R. G. A.,, and Lambers,  H.. (1995);  Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on nitrate supply.  Plant and Soil. 171 217-227
  • 29 Poorter,  H.,, and Van der Werf,  A.. (1998) Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species. Inherent variation in plant growth. Lambers, H., Poorter, H., and Van Vuuren, M. M. I., eds. Leiden; Backhuys Publishers pp. 309-336
  • 30 Poorter,  L.. (1999);  Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits.  Functional Ecology. 13 396-410
  • 31 Reich,  P. J.,, Ellsworth,  D. S.,, and Uhl,  C.. (1995);  Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic Amazonian forest.  Functional Ecology. 9 65-76
  • 32 Reich,  P. J.,, Tjoelker,  M. G.,, Walters,  M. B.,, Vanderklein,  D. W.,, and Buschena,  C.. (1998);  Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light.  Functional Ecology. 12 327-338
  • 33 Ryser,  P.. (1996);  The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses.  Functional Ecology . 10 717-723
  • 34 Ryser,  P., and Aeschlimann,  U.. (1999);  Proportional dry mass content as an underlying trait for the variation in relative growth rate among 22 Eurasian populations of Dactylis glomerata s.l.  Functional Ecology. 13 in press
  • 35 Ryser,  P., and Eek,  L.. (2000);  Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources.  American Journal of Botany. 87 in press
  • 36 Ryser,  P., and Lambers,  H.. (1995);  Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply.  Plant and Soil. 170 251-265
  • 37 Ryser,  P., and Notz,  R.. (1996);  Competitive ability of three ecologically contrasting grass species at low nutrient supply in relation to their maximal relative growth rate and tissue density.  Bulletin of the Geobotanical Institute ETH Zürich. 62 3-12
  • 38 Ryser,  P., and Urbas,  P.. (2000);  Ecological significance of leaf life span among Central European grass species.  Oikos. 91 41-50
  • 39 Schläpfer,  B., and Ryser,  P.. (1996);  Leaf and root turnover of three ecologically contrasting grass species in relation to their performance along a productivity gradient.  Oikos. 75 398-406
  • 40 Sokal,  R. R., and Rohlf,  F. J.. (1995) Biometry, 3rd ed. New York; W. H. Freeman and Company
  • 41 Szeicz,  G.. (1974);  Solar radiation for plant growth.  Journal of Applied Ecology. 11 617-636
  • 42 Van Arendonk,  J. J. C. M.,, Niemann,  G. J.,, Boon,  J. J.,, and Lambers,  H.. (1997);  Effects of nitrogen supply on the anatomy and chemical composition of leaves of four grass species belonging to the genus Poa, as determined by image-processing analysis and pyrolysis-mass spectrometry.  Plant, Cell and Environment. 20 881-897
  • 43 Van der Werf,  A.,, Geerts,  R. H. E. M.,, Jacobs,  F. H. H.,, Korevaar,  H.,, Oomes,  M. J. M.,, and De Visser,  W.. (1998) The importance of relative growth rate and associated traits for competition between species during vegetational succession. Inherent variation in plant growth. Lambers, H., Poorter, H., and Van Vuuren, M. M. I., eds. Leiden; Backhuys Publishers pp. 489-502
  • 44 Van der Werf,  A.,, Van Nuenen,  M.,, Visser,  A. J.,, and Lambers,  H.. (1993 a);  Effects of N-supply on the rates of photosynthesis and shoot and root respiration of inherently fast- and slow-growing monocotyledonous species.  Physiologia Plantarum . 89 563-569
  • 45 Van der Werf,  A.,, Van Nuenen,  M.,, Visser,  A. J.,, and Lambers,  H.. (1993 b);  Contribution of physiological and morphological plant traits to a species' competitive ability at high and low nitrogen supply.  Oecologia. 94 434-440
  • 46 Veneklaas,  E. J., and Poorter,  L.. (1998) Growth and carbon partioning of tropical tree seedlings in contrasting light environments. Inherent variation in plant growth. Lambers, H., Poorter, H., and Van Vuuren, M. M. I., eds. Leiden; Backhuys Publishers pp. 337-361
  • 47 Virgona,  J. M., and Farquhar,  G. D.. (1996);  Genotypic variation in relative growth rate and carbon isotope discrimination in sunflower is related to photosynthetic capacity.  Australian Journal of Plant Physiology. 23 227-236
  • 48 Walters,  M. B., and Reich,  P. B.. (1999);  Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ?.  New Phytologist. 143 143-154
  • 49 Wilson,  P. J.,, Thompson,  K.,, and Hodgson,  J. G.. (1999);  Specific leaf area and leaf dry matter content as alternative predictors of plant strategies.  New Phytologist. 143 155-162
  • 50 Zar,  J. H.. (1996) Biostatistical analysis, 3rd ed. Englewood Cliffs, New Jersey; Prentice Hall

P. Ryser

Geobotanisches Institut ETH Zürich

Gladbachstr. 114
8044 Zürich
Switzerland

Email: ryser@geobot.umnw.ethz.ch

Section Editor: L. A. C. J. Voesenek

    >