Plant Biol (Stuttg) 2001; 3(2): 139-148
DOI: 10.1055/s-2001-12905
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Characterization of Root Exudates at Different Growth Stages of Ten Rice (Oryza sativa L.) Cultivars

M. S. Aulakh 1,2 , R. Wassmann 1,3 , C. Bueno 1 , J. Kreuzwieser 4 , H. Rennenberg 3,4
  • 1 International Rice Research Institute, Soil and Water Sciences Division, Makati City, Philippines
  • 2 Present address: Department of Soils, Punjab Agricultural University, Ludhiana , Punjab, India
  • 3 Fraunhofer Institute for Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany
  • 4 4Institute for Forest Botany and Tree Physiology, University of Freiburg, Freiburg, Germany
Further Information

Publication History

January 8, 2001

February 13, 2001

Publication Date:
29 April 2004 (online)

Abstract

Plant root exudates play important roles in the rhizosphere. We tested three media (nutrient solution, deionized water and CaSO4 solution) for three periods of time (2, 4 and 6 h) for collecting root exudates of soil-grown rice plants. Nutrient culture solution created complications in the analyses of exudates for total organic C (TOC) by the wet digestion method and of organic acids by HPLC due to the interference by its components. Deionized water excluded such interference in analytical analyses but affected the turgor of root cells; roots of four widely different rice cultivars excreted 20 to 60 % more TOC in deionized water than in 0.01 M CaSO4. Furthermore, the proportion of carbohydrates in TOC was also enhanced. Calcium sulfate solution maintained the osmotic environment for root cells and did not interfere in analytical procedures. Collection for 2 h avoided under-estimation of TOC and its components exuded by rice roots, which occurred during prolonged exposure. By placing plants in 0.01 M CaSO4 for 2 h, root exudates of soil-grown traditional, tall rice cultivars (Dular, B40 and Intan), high-yielding dwarf cultivars (IR72, IR52, IR64 and PSBRc 20), new plant type cultivars (IR65598 and IR65600) and a hybrid (Magat) were collected at seedling, panicle initiation, flowering and maturity and characterized for TOC and organic acids. The exudation rates were, in general, lowest at seedling stage, increased until flowering but decreased at maturity. Among organic acids, malic acid showed the highest concentration followed by tartaric, succinic, citric and lactic acids. With advancing plant growth, exudation of organic acids substituted exudation of sugars. Root and shoot biomass were positively correlated with carbon exudation suggesting that it is driven by plant biomass. As root exudates provide substrates for methanogenesis in rice fields, large variations in root exudation by cultivars and at different growth stages could greatly influence CH4 emissions. Therefore, the use of high-yielding cultivars with lowest root excretions, for example IR65598 and IR65600, would mediate low exudate-induced CH4 production. The screening of exciting rice cultivars and breeding of new cultivars with low exudation rates could offer an important option for mitigation of CH4 emission from rice agriculture to the atmosphere.

References

  • 01 Andal,  R.,, Bhuvanesware,  K.,, and Subba-Rao,  N.. (1956);  Root exudates of paddy.  Nature. 178 1063
  • 02 Aulakh,  M. S.,, Bodenbender,  J.,, Wassmann,  R.,, and Rennenberg,  H.. (2000 a);  Methane transport capacity of rice plants. I. Influence of methane concentration and growth stage analyzed with an automated measuring system.  Nut. Cycling Agroecosyst.. 58 357-366
  • 03 Aulakh,  M. S.,, Bodenbender,  J.,, Wassmann,  R.,, and Rennenberg,  H.. (2000 b);  Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics.  Nut. Cycling Agroecosyst.. 58 367-375
  • 04 Aulakh,  M. S.,, Wassmann,  R.,, Rennenberg,  H.,, and Fink,  S.. (2000 c);  Pattern and amount of aerenchyma relates to variable methane transport capacity of different rice cultivars.  Plant Biol.. 2 182-194
  • 05 Aulakh,  M. S.,, Wassmann,  R.,, Bueno,  C.,, and Rennenberg,  H.. (2001);  Impact of root exudates of different rice cultivars on methane production in soil under anaerobic conditions.  Plant and Soil. in press
  • 06 Badoud,  R., and Pratz,  G.. (1986);  Improved high-performance liquid chromatographic analysis of some carboxylic acids in food and beverages as their p-nitrobenzyl esters.  J. Chromatography. 360 119-136
  • 07 Bartolome,  V. I.,, Casumpang,  R. M.,, Ynalvez,  M. A. H.,, Olea,  A. B.,, and McLaren,  C. G.. (1999) IRRISTAT for Windows - Statistical Software for Agricultural Research. Los Banos, The Philippines; Biometrics, International Rice Research Institute
  • 08 Beissner,  L., and Römer,  W.. (1998) Mobilization of phosphorus by root exudates of sugar beet. Summaries, 16th World Congress Soil Science, Vol. II. Montpellier, France p. 776
  • 09 Brink,  R. H. Jr.,, Dubach,  P.,, and Lynch,  D. L.. (1960);  Measurement of carbohydrates in soil hydrolyzates with anthrone.  Soil Sci.. 89 157-166
  • 10 Cochran,  W. G., and Cox,  G. M.. (1950) Experimental Designs. New York; John Wiley and Sons, Inc.
  • 11 Dannenberg,  S., and Conrad,  R.. (1999);  Effect of rice plants on methane production and rhizospheric metabolism in paddy soil.  Biogeochem.. 45 53-71
  • 12 Dinkelaker,  B.,, Hengeler,  C.,, Neumann,  G.,, and Marschner,  H.. (1996) Root exudates and mobilization of nutrients. Trees - Contributions to Modern Tree Physiology. Rennenberg, H., Eschrich, W., and Ziegler, H., eds. Amsterdam; Academic Publishing bv pp. 3-14
  • 13 Fukumorita,  T., and Chino,  M.. (1982);  Sugar, amino acid and inorganic contents in rice phloem sap.  Plant Cell Physiol.. 23 273-283
  • 14 Giaquinta,  R.. (1980);  Mechanism and control of phloem loading of sucrose.  Ber. Deutsch Bot. Ges.. 93 187-201
  • 15 Hale,  M. G., and Moore,  L. D.. (1979);  Factors affecting root exudation. II: 1970 - 1978.  Adv. Agron.. 31 93-124
  • 16 Hodge,  A.,, Grayston,  S. J.,, and Ord,  B. G.. (1996);  A novel method for characterisation and quantification of plant root exudates.  Plant and Soil. 184 97-104
  • 17 Hoffland,  E. E.,, van den Boogaard,  R.,, Nelemans,  J. A.,, and Findenegg,  G. R.. (1989);  Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P starvation.  Plant and Soil. 113 161-165
  • 18 Holzapfel-Pschorn,  A.,, Conrad,  R.,, and Seiler,  W.. (1986);  Effects of vegetation on the emission of methane from submerged paddy soil.  Plant and Soil. 92 223-391
  • 19 Jauregui,  M. A., and Reisenauer,  H. M.. (1982);  Dissolution of oxides of manganese and iron by root exudate components.  Soil Sci. Soc. Am. J.. 46 314-317
  • 20 Jones,  D. L., and Darrah,  P. R.. (1992);  Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. I. Re-sorption of 14C labelled glucose, mannose and citric acid.  Plant and Soil. 143 259-266
  • 21 Jones,  D. L., and Darrah,  P. R.. (1993);  Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. II. Experimental and model evidence for simultaneous exudation and re-sorption of soluble C compounds.  Plant and Soil. 153 47-59
  • 22 Jones,  D. L., and Darrah,  P. R.. (1994);  Role of root derived organic acids in the mobilization of nutrients from the rhizosphere.  Plant and Soil. 166 247-257
  • 23 Kirk,  G. J. D.,, Santos,  E. E.,, and Santos,  M. B.. (1999);  Phosphate solubilization by organic anion excretion from rice growing in aerobic soil: rates of excretion and decomposition, effects on rhizosphere and pH and effects on phosphate solubility and uptake.  New Phytol.. 142 185-200
  • 24 Kludze,  H. K.,, DeLaune,  R. D.,, and Patrick,  W. H. Jr.. (1993);  Aerenchyma formation and methane and oxygen exchange in rice.  Soil Sci. Soc. Am. J.. 57 386-391
  • 25 Leon,  J. C., and Carpena,  A. L.. (1995);  Morphology-based diversity analysis of improved irrigated lowland rice (Oryza sativa L.) varieties in the Philippines.  Philip. J. Crop Sci.. 20 (2) 113-121
  • 26 Lin,  M., and You,  C.. (1989);  Root exudates of rice (Oryza sativa L.) and its interaction with Alcaligenes faecalis. .  Scientia Agricultura Sinica. 22 6-12 (in Chinese)
  • 27 Lindau,  C. W.,, Bollich,  P. K.,, DeLaune,  R. D.,, Patrick,  W. H. Jr.,, and Law,  V. J.. (1991);  Effect of urea fertilizer and environmental factors on CH4 emissions from a Louisiana USA rice field.  Plant and Soil. 136 195-203
  • 28 Lu,  Y.,, Wassmann,  R.,, Neue,  H. U.,, and Huang,  C.. (1999);  Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants.  Biogeochem.. 47 203-218
  • 29 Lu,  Y.,, Wassmann,  R.,, Neue,  H. U.,, Huang,  C.,, and Bueno,  C. S.. (2000);  Methanogenic responses to exogenous substrates in anaerobic rice soils.  Soil Biol. Biochem.. 32 1683-1690
  • 30 Mac Rae,  I. C., and Castro,  T. F.. (1966);  Carbohydrates and amino acids in the root exudates of rice seedlings.  Phyton. 23 95-100
  • 31 Marschner,  H.. (1995) Mineral Nutrition of Higher Plants, 2nd Edition. London; Academic Press
  • 32 Marschner,  H.,, Treeby,  M.,, and Kissel,  M.. (1989);  Role of root-induced changes in the rhizosphere for iron acquisition in higher plants.  Z. Pflanzenernähr. Bodenk.. 152 197-204
  • 33 Nelson,  D. W., and Sommers,  L. E.. (1996) Total carbon, organic carbon, and organic matter. Methods of Soil Analysis, Part 3 - Chemical methods. SSSA Book Series no. 5. Sparks, D. L., ed. Madison, Wisconsin; Soil Science Society of America and American Society of Agronomy pp. 961-1010
  • 34 Neumann,  G., and Römheld,  V.. (1998) Phosphorus deficiency-induced root excretion of carboxylic acids and protons in different plant species. Summaries, 16th World Congress Soil Science, Vol. II. Montpellier, France p. 783
  • 35 Pikryl,  Z., and Vanura,  V.. (1980);  Root exudates of plants. VI. Wheat root exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria.  Plant and Soil. 57 69-83
  • 36 Rattray,  E. A. S.,, Paterson,  E.,, and Killham,  K.. (1995);  Characterisation of the dynamics of C-partitioning within Lolium perenne and to the rhizosphere microbial biomass using 14C pulse chase.  Biol. Fertil. Soils. 19 280-286
  • 37 Rennenberg,  H.,, Wassmann,  R.,, Papen,  H.,, and Seiler,  W.. (1992);  Trace gas emission in rice cultivation.  Ecol. Bull.. 42 164-173
  • 38 Sauerbeck,  D., and Johnen,  B.. (1976);  Der Umsatz von Pflanzenwurzeln im Laufe der Vegetationsperiode und dessen Beitrag zur “Bodenatmung”.  Z. Pflanzenernähr. Bodenk.. 139 315-328
  • 39 Shen,  Y.,, Ström,  L.,, Jönsson,  J. A.,, and Tyler,  G.. (1996);  Low-molecular organic acids in the rhizosphere soil solution of beech forest (Fagus sylvatica L.) cambisols determined by ion chromatography using supported liquid membrane enrichment technique.  Soil Biol. Biochem.. 28 1163-1169
  • 40 Vanura,  V.,, Pikryl,  Z.,, Kalachova,  L.,, and Wurst,  M.. (1977);  Some quantitative aspects of root exudates.  Ecol. Bull.. 25 381-386
  • 41 Vaughan,  D.,, Cheshire,  M. V.,, and Ord,  B. G.. (1994);  Exudation of peroxide from roots of Festuca rubra and its effects on exuded phenolic acids.  Plant and Soil. 160 153-155
  • 42 Wang,  B.,, Neue,  H. U.,, and Samonte,  H. P.. (1997);  Effect of rice plant on seasonal methane emission patterns.  Acta Agronomica Sinica. 23 271-279
  • 43 Wassmann,  R., and Aulakh,  M. S.. (2000);  The role of rice plants in regulating mechanisms of methane emission.  Biol. Fertil. Soils. 31 20-29
  • 44 Westerman,  R. L.. (1990) Soil Testing and Plant Analysis, Third Edition. Madison, Wisconsin; Soil Science Society of America
  • 45 Zhang,  F.,, Römheld,  V.,, and Marschner,  H.. (1989);  Effect of zinc deficiency in wheat on the release of zinc and iron mobilizing root exudates.  Z. Pflanzenernähr. Bodenk.. 152 205-210

H. Rennenberg

Institute for Forest Botany and Tree Physiology
Albert-Ludwigs University

79085 Freiburg
Germany

Email: here@uni-freiburg.de

Section Editor: U. Lüttge

    >