Semin Respir Crit Care Med 2000; 21(1): 0019-0032
DOI: 10.1055/s-2000-9927
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

New Antibiotics in Pulmonary and Critical Care Medicine: Focus on Advanced Generation Quinolones and Cephalosporins

Paul G. Ambrose1 , Robert C. Owens, Jr.2
  • 1University of the Pacific, School of Pharmacy Stockton, California, and Kendle International, Inc
  • 2Maine Medical Center, Portland, Maine, and University of Vermont, College of Medicine, Burlington, Vermont
Further Information

Publication History

Publication Date:
31 December 2000 (online)

 

ABSTRACT

The primary goal in the treatment of respiratory tract infections is to provide the best possible clinical outcome for the patients. In order for this to occur, one must consider and synthesize a tremendous amount of data, much of it changing continually. Important considerations include the pharmacokinetics of the selected agent, its microbiological potency when used alone and in combination with various other agents, and the susceptibilities of the target organisms. Gram-negative bacilli remain among the most frequent cause of bacterial infection in the intensive care unit and in debilitated populations. They also have the ability to resist the best therapies. Among the topics to be discussed here are the important pharmacodynamic concepts and their role in the determination of clinical efficacy, the newer quinolone agents, newly emerging mechanisms of resistance, and recent countermeasures that have been added to the therapeutic armamentarium. In addition, specific strategies designed to combat current resistance trends supported by several recent publications will be reviewed.

REFERENCES

  • 1 Eagle H, Fleischman R, Levy M. Continuous vs discontinuous therapy with penicillin.  N Engl J Med . 1953;  238 481-488
  • 2 Eagle H. Effect of schedule of administration on therapeutic efficacy of penicillin: Importance of aggregate time penicillin remains at effectively bactericidal levels.  Am J Med . 1950;  9 280-299
  • 3 Eagle H, Fleischman R, Musselman A D. Effective concentrations of penicillin in vitro and in vivo for streptococci and pneumococci, and Trepomena.  J Bacteriol . 1950;  59 625-643
  • 4 Craig W A. Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins.  Diagn Microbiol Infect Dis . 1995;  22 89-96
  • 5 Nishida M, Murakawa T, Kaminura T. Bactericidal activity of cephalosporins in an in-vitro model simulating serum levels.  Antimicrob Agents Chemother . 1978;  14 6-12
  • 6 Moore R D, Lietman P S, Smith C R. Clinical response to aminoglycoside therapy: Importance of the ratio of peak concentration to minimum inhibitory concentration.  J Infect Dis . 1987;  155 93-99
  • 7 Prestom S L, Drusano G L, Berman A L. Pharmacodynamics of levofloxacin.  JAMA . 1998;  279 125-129
  • 8 Fong I W, Cheng P C, Hinton N A. Fungicidal effect of amphotericin B in urine: In vitro study to assess feasibility of bladder washout for localization of site of candiduria.  Antimicrob Agents Chemother . 1991;  35 1856-1859
  • 9 Krieger J N, Dickins C S, Rein M F. Use of time-kill technique for susceptibility testing of Trichomonas vaginalis Antimicrob Agents Chemother .  1985;  27 332-336
  • 10 Lutsar I, Friedland I R, Wubbel L. Pharmacodynamics of gatifloxacin in cerebrospinal fluid in experimental cephalosporin-resistant pneucoccal meningitis.  Antimicrob Agents Chemother . 1998;  42 2650-2655
  • 11 Forrest A, Nix D E, Ballow C H, Scgentag J. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients.  Antimicrob Agents Chemother . 1993;  37 1073-1081
  • 12 Lacy M K, Lu W, Xu X, Nicolau D P, Quintiliani R, Nightingale C H. Pharmacodynamic comparison of levofloxacin, ciprofloxacin and ampicillin against Streptococcus pneumoniae in an in vitro model of infection.  Antimicrob Agents Chemother . 1999;  43 672-677
  • 13 Vesga O, Craig W A. Activity of levofloxacin against penicillin-resistant streptococcus pnemoniae in normal and neutropenic mice. In: Abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, Louisiana, September 15-18, 1996
  • 14 Lee B L, Padula A M, Kimbrough R C. Infectious complications with respiratory pathogens despite ciprofloxacin therapy.  N Engl J Med . 1991;  325 520-521
  • 15 Owens Jr C J, Ambrose P G, Quintiliani R. Antibiotic protein binding: Therapeutic implications.  Antibiotics for Clinicians . 1997;  1 125-127
  • 16 Craig W A, Shu B. Theory and practical impact of binding of antimicrobials to serum proteins and tissue.  Scan J Infect Dis . 1978;  14(suppl) 92-99
  • 17 Shyu W C, Quintiliani R, Nightingale C H, Dudley M N. Effect of protein binding on drug penetration into blister fluid.  Antimicrob Agents Chemother . 1988;  32 128-130
  • 18 Rolinson G N. The significance of protein binding of antibiotics in bacterial chemotherapy.  J Antimicrob Chemother . 1980;  6 311-317
  • 19 Craig W A, Kunin C M. Significance of serum protein and tissue binding of antimicrobial agents.  Annu Rev Med . 1976;  27 287-300
  • 20 Grew R K, Moellering Jr C R. Effect of protein binding on activity of penicillins in combination with gentimicin against enterococci.  Antimicrob Agents Chemother . 1979;  15 87-92
  • 21 Merrikin D J, Briant J, Rolinson G N. Effect of protein binding on antibiotic activity in vivo.  J Antimicrob Chemother . 1983;  11 233-238
  • 22 Moody J A, Peterson L R, Gerding D N. Cefoperazone treatment efficacy: Dependant on protein binding 25th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, September 17-20, 1985. Abstract 557
  • 23 Andriole V T. The quinolones. In: Andriole VT, ed. The Quinolones, 2nd ed San Diego, CA: Academic Press 1998: 417-426
  • 24 Stein G E. Pharmacokinetics and dynamics of newer quinolones.  Clin Infect Dis . 1996;  23(suppl 1) S19-24
  • 25 Raxar package insert. Glaxo Pharmaceutical, November 1997
  • 26 Ambrose P G, Owens Jr C R, Quintiliani R, Nightingale C H. New generation quinolones.  Conn Med . 1997;  61 269-272
  • 27 Owens Jr C R, Ambrose P G, Quintiliani R, Nightingale C H. Classifying quinolone anti-infective agents by generation: A pharmacodynamic approach to rational drug selection.  Antibiotics for Clinicians . 1997;  1 70-74
  • 28 Owens Jr R C, Ambrose P G, Quintiliani R, Nightingale C H. Quinolones classified by generation: A pharmacodynamic analysis of respiratory tract and anaerobic pathogens. 32nd Annual ASHP Midyear Clinical Meeting, Atlanta, Georgia, December 8, 1997
  • 29 Domagala J M, Hanna L D, Heifetz C L. New structure-activity relationships of the quinolone antibacterials useing the target enzyme: The development and application of a DNA gyrase assay.  J Med Chem . 1986;  29 394-404
  • 30 Domagala J M. Structure-activity and structure-side-effect relationshipsfor quinolone antibacterials.  J Antimicrob Chemother . 1994;  33 685-706
  • 31 Blum M D, Graham D J, McCloskey C A. Temafloxacin syndrome: Review of 95 cases.  Clin Infect Dis . 1994;  18 946-950
  • 32 Levoquin package insert. Ortho Pharmaceutical, December 1996 . 
  • 33 Lacreta F, Kollia G, Behr D, Stoltz R, Grasela D. Effect of a high-fat meal on the bioavailability of gatifloxacin in heathly volunteers. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, California, September 24-27, 1998
  • 34 Schaumann R, Claros M C, Pless B, Rodloff A C. In vitro activity of gatifloxacin against anaerbic bacteria compared with other quinolones and non-quinolone antimicrobials. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, California, September 24-27, 1998
  • 35 Asahina Y, Ishizaki T, Suzue S. Recent advances in structure activity relationships in new quinolones.  Prog Drug Res . 1992;  38 57-106
  • 36 Hecht D W, Wexler H M. In vitro susceptability of anaerobes to quinolones in the United States.  Clin Infect Dis . 1996;  23(suppl 1) S2-S8
  • 37 Peterson M L, Hovde L B, Wright D H, Hoang A D, Rotschafer J C. Trovafloxacin and levofloxacin resistance in Bacteroides fragilis 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, California, September 24-27, 1998. Abstract E-32
  • 38 Matsumoto M, Kojima K, Nagano H, Matsubara S, Yokata T. Photostability and biological activity of fluoroquinolones substituted at the 8 position after UV irradiation.  Antimicrob Agents Chemother . 1992;  36 1715-1719
  • 39 Vohr H W, Wasinska G, Ahr H J. Studies on the phatotoxic potential of BAY 12-8039. 36th Interscience Conference on Antimicrobial Agents and Chemotherapy, 1996. Abstract F021
  • 40 Kusajima H, Manita S, Yamamoto T, Hosaka M, Momo K. Phototoxicity and photochemical generation of reactive oxygen by new quinolones. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, 1998. Abstract A-76
  • 41 Ferguson J, Mcewen J, Goehler K, Mignot A. A double-blind, placebo- and positive-controlled, randomized study to investigate the phototoxic potential of gatifloxacin, a new fluoroquinolone antibiotic. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, 1998. Abstract A-78
  • 42 Hentge D J. Human Intestinal Microflora in Health and Disease.  New York: Academic Press 1993
  • 43 Soleim H A, Scheline R R. Metabolism of xenobiotics by strains of intestinal bacteria.  Acta Pharmacol Toxicol . 1972;  31 471
  • 44 Mathan V I, Wiederman J, Dobkin J F. Geographic differences in digoxin inactivation, a metabolic activity of the human anaerobic gut flora.  Gut . 1989;  30 971-977
  • 45 Lindenbaum J, Rund D G, Butler Jr P V. Inactivation of digoxin by the gut flora: Reversal by antibiotic therapy.  N Engl J Med . 1970;  42 341-345
  • 46 Kromer W. Endogenous and exogenous opioids in the control of gastroimtestinal motility and secretion.  Pharmacol Rev . 1988;  40 121-162
  • 47 Coupar I M. Opioid action on the intestine: the importance of the intestinal mucosa.  Life Sci . 1987;  41 917-925
  • 48 Trovan package insert. Pfizer Pharmaceuticals, January 1997 . 
  • 49 Morrow C, McArole C, Pettitt L. Brief report: Pharmacokinetics of orally administered ciprofloxacin in abdominal surgery.  Am J Med . 1989;  87(suppl 5A) 86-88
  • 50 Mizuki Y, Fujiwari I, Yamaguchi T. Pharmcokinetic interations related to the chemical structures of fluoroquinolones.  J Antimicrob Chemother . 1996;  37(suppl A) 41-55
  • 51 Sanders C C, Sanders Jr E W. Emergence of resistance to cefamandole: Possible role of cefoxitin-inducible β-lactamases.  Antimicrob Agents Chemother . 1979;  15 792-797
  • 52 Meideiros A A. Evolution and dessemination of beta-lactamases excellocted by generations of beta-lactam antibiotics.  Clin Infec Dis . 1997;  24(suppl 1) 19-45
  • 53 Knothe H, Shah P, Kremery V. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens Infection .  1983;  11 315-317
  • 54 Rahal J J, Urban C, Horn D. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella JAMA .  1998;  280 1233-1237
  • 55 Burke J P. Antibiotic resistance-Squeezing the balloon?.  JAMA . 1998;  280 1270-1271
  • 56 Paterson D L, Ko W, Von Gottberg A. In vitro susceptibility and clinical outcome of bacteremia due to extended-spectrum beta-lactamase (ESBL) producing Klebsiella pneumoniae Clin Infect Dis .  1998;  27 956
  • 57 Pfaller M A, Jones R N, Doern G V. Bacterial pathogens from patients with bloodstream infections: Frequencies of occurrence and antimicrobial susceptibility patterns from the SENTRY antimicrobial surveillance program (United States and Canada, 1997).  Antimicrob Agents Chemother . 1998;  42 1762-1770
  • 58 Jones R N, Pfaller M A, Doern G V. Antimicrobial activity and spectrum investigation of eight broad-spectrum β-lactam drugs: A 1997 surveillance trial in 102 medical centers in the united states.  Diagn Microbiol Infect Dis . 1997;  30 215-228
  • 59 Jones R N, Marshall S A. Antimicrobial activity of cefepime tested against class C β-lactamase-producing strains resistant to ceftazidime: A multilaboratory national and international clinical isolate study.  Diagn Microbiol Infect Dis . 1994;  19 33-38
  • 60 Thornsberry C, Ogilvie P, Kahn J. Surveillance of antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the United States in 1996-1997 respiratory season.  Diagn Microbiol Infect Dis . 1997;  29 249-257
  • 61 Sanders C C, Sanders Jr E W. Emergence of resistance during therapy with the newer β-lactam antibiotics: Role of inducible β-lactamases and implications for the future.  Rev Infect Dis . 1983;  5 639-648
  • 62 Sanders C C, Sanders Jr E W. β-lactam resistance in gram-negative bacteria: Global trends and clinical impact.  Clin Infect Dis . 1992;  15 824-839
  • 63 Johnson M P, Ramphal R. β-lactam resistant Enterobacter bacteremia in febrile neutropenic patients receiving monotherapy.  J Infect Dis . 1990;  162 981-983
  • 64 Fussle R, Biscoping J, Behr R. Development of resistance by Enterobacter cloacae during therapy of pulmonary infections in intensive care patients.  Clin Invest . 1994;  72 1015-1019
  • 65 Burwen D R, Banerjee S N, Gaynes R P. Ceftazidime resistance among selected nosocomial gram-negative bacilli in the United States.  J Infect Dis . 1994;  170 1622-1625
  • 66 Quinn J P. Clinical problems posed by multiresistant nonfermenting gram-negative pathogens.  Clin Infect Dis . 1998;  27(suppl 1) s117-s124
  • 67 Ambrose P G, Richerson M A, Bui K. Cost-effectiveness analysis of cefepime versus ceftazidime in ICU patients with hospital-acquired pneumonia.  Clin Infect Dis . 1998;  27 1046
  • 68 Chow J W, Fine M J, Shlaes D M. Enterobacter bacteremia: Clinical features and emergence of antibiotic resistance during therapy.  Ann Intern Med . 1991;  115 585-590
  • 69 Sanders Jr E W, Sanders C C. Enterobacter spp.: Pathogens poised to fluorish at the turn of the century.  Clin Micro Rev . 1997;  10 220-241
  • 70 Holmberg S D, Solomon S L, Blake P A. Health and economic impacts of antimicrobial resistance.  Rev Infect Dis . 1987;  9 1065-1078
  • 71 Aronoff S C, Shlaes D M. Factors that influence the evolution of β-lactam resistance in β-lactamase-inducible strains of Enterobacter cloacae and Pseudomonas aeruginosa J Infect Dis .  1987;  155 936-941
  • 72 Drusano G L, Craig W A. Relevance of pharmacokinetics and pharmacodynamics in the selection of antibiotics for respiratory tract infections.  J Chemother . 1997;  9(suppl 3) 936-941
  • 73 Thomas J K, Forrest A, Bhavnani S M. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy.  Antimicrob Agents Chemother . 1998;  42 521-527
  • 74 Sanders Jr E W, Tenney J H, Kessler R E. Efficacy of cefepime in the treatment of infections due to multiply resistant enterobacter species.  Clin Infect Dis . 1996;  23 454-461
  • 75 Chow A W, Wong J, Bartlett K H. Synergistic interactions of ciprofloxacin and extended-spectrum β-lactams or aminoglycosides against multiply drug-resistant Pseudomonas maltophilia Antimicrob Agents Chemother .  1988;  32 782-784
  • 76 Cometta A, Baumgartner J D, Lew D. Prospective randomized comparison of imipenem monotherapy with imipenem plus netilmicin for treatment of severe infections in nonneutropenic patients.  Antimicrob Agents Chemother . 1994;  38 1309-1313
  • 77 Korvick J A, Bryan C S, Farber B. Prospective observational study of klebsiella bacteremia in 230 patients: Outcome for antibiotic combinations versus monotherapy.  Antimicrob Agents Chemother . 1992;  36 2639-2644
  • 78 Leibovici L, Paul M, Poznanski O. Monotherapy versus β-lactam-aminoglycoside combination treatment for gram-negative bacteremia: A prospective, observational study.  Antimicrob Agents Chemother . 1997;  41 1127-1133
  • 79 Neu H C. Synergy and antagonism of fluoroquinolones with other classes of antimicrobial agents.  Drugs . 1993;  45(suppl 3) 54-58
  • 80 Stratton C W, Franke J J, Weeks L S. Comparison of the bactericidal activity of ciprofloxacin alone and in combination with selected antipseudomonal β-lactam agents against clinical isolates of Pseudomonas aeruginosa Diagn Microbiol Infect Dis .  1989;  11 41-52
  • 81 Eliopoulos G M, Eliopoulos C T. Ciprofloxacin in combination with other antimicrobials.  Am J Med . 1989;  87(suppl 5A) 17s-22s
  • 82 Tolzis P, Yamashita T, Vilt L. Antibiotic resistance does not alter endemic colonization with resistant gram-negative rods in a pediatric intensive care unit.  Crit Care Med . 1998;  26 1893-1896
  • 83 Goldman M, Adelman M H, Thompson C E. Impact of conversion from ceftazidime to cefepime on ICU resistance patterns of Enterobacter cloacae 8th International Congress of Infectious Diseases, Boston, Massachusetts, May 1998 . 
  • 84 Mebis J, Gossens H, Meeus I. Decreasing antibiotic resistance of inducible Enterobacteriaceae by introducing combination therapy.  Blood . 1996;  88 505a
  • 85 Owens Jr R C, Owens C A, Holloway W J. Comparative evaluation of a cefepime Q12-hour dosing schedule as empiric monotherapy infebril neutropenic patients.  Pharmaco Ther . 1999;  19 496-497
    >