Semin Respir Crit Care Med 2000; Volume 021(Number 05): 463-472
DOI: 10.1055/s-2000-9455
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

New Gene and Cell-Based Therapies for Lung Cancer

Raj K. Batra1 , Sherven Sharma2 , Steven M. Dubinett3
  • 1Division of Pulmonary and Critical Care Medicine, GLA-VAHCS, UCLA School of Medicine and Member, Jonsson Comprehensive Cancer Center
  • 2Department of Medicine, Division of Pulmonary and Critical Care Medicine, West Los Angeles VA Medical Center, UCLA School of Medicine
  • 3UCLA/Wadsworth Pulmonary Immunology Laboratory, Division of Pulmonary and Critical Care Medicine, GLA-VAHCS, UCLA School of Medicine and Member, Jonsson Comprehensive Cancer Center, Los Angeles, California
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

Lung cancer is the leading cause of cancer-related mortality in men and women in the United States, in part, because of the poor treatment options available. New treatment strategies that specifically target discreet steps in the molecular and cellular pathogenesis of this disease are under development. This review highlights many of the basic defects that result in the cellular transformation and subsequent progression of lung cancer, and how the understanding of those fundamental defects lead to the formulation of rational gene-based or cell-based therapies.

REFERENCES

  • 1 Parker S, Davis K, Wingo P, Ries L, Heath C J. Cancer statistics by race and ethnicity.  CA Cancer J Clin . 1998;  48 31-48
  • 2 Ramanathan R, Belani C. Chemotherapy for advanced non-small cell lung cancer: Past, present and future.  Semin Oncol . 1997;  24 440-454
  • 3 Salgia R, Skarin A T. Molecular abnormalities in lung cancer.  J Clin Oncol . 1998;  16 1207-1217
  • 4 Carbone D. The biology of lung cancer.  Semin Oncol . 1997;  24 388-401
  • 5 Sethi T. Science, medicine, and the future. Lung cancer.  Br Med J . 1997;  314 652-655
  • 6 Nishio M, Koshikawa T, Kuroishi T. Prognostic significance of abnormal p53 accumulation in primary, resected non-small-cell lung cancers.  J Clin Oncol . 1996;  14 497-502
  • 7 Kern S, Pietenpol J, Thiagalingam S, Seymour A, Kinzler K, Vogelstein B. Oncogenic forms of p53 inhibit p53-regulated gene expression.  Science . 1992;  256 827-830
  • 8 Kern J A, Schwartz D A, Nordberg J E. p185neu expression in human lung adenocarcinomas predicts shortened survival.  Cancer Res . 1990;  50 5184-5187
  • 9 Roth J, Nguyen D, Lawrence D. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer.  Nature Med . 1996;  2 985-991
  • 10 Qazilbash M, Xiao X, Cowan K, Walsh C. Cancer gene therapy using a novel adeno-associated virus vector expressing human wild-type p53.  Gene Ther . 1997;  4 675-682
  • 11 Takahashi T, Carbone D, Takahashi T. Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions.  Cancer Res . 1992;  52 2340-2343
  • 12 Freeman S M, Abboud C N, Whartenby K A. The ``bystander effect'': Tumor regression when a fraction of the tumor mass is genetically modified.  Cancer Res . 1993;  53 5274-5283
  • 13 Nishizaki M, Fujiwara T, Tanida T. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: A proposed mechanism for bystander effect.  Clin Cancer Res . 1999;  5 1015-1023
  • 14 Chen H, Carbone D. p53 as a target for anti-cancer immunotherapy.  Mol Med Today . 1997;  3 160-167
  • 15 Vierboom M, Nijman H, Offringa R. Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes.  J Exp Med . 1997;  186 695-704
  • 16 Swisher S G, Roth J A, Nemunaitis J. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer.  J Natl Cancer Inst . 1999;  91 763-771
  • 17 Bischoff J R, Kirn D H, Williams A. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells.  Science . 1996;  274 373-376
  • 18 Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff D, Kirn D. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents.  Nature Med . 1997;  3 639-645
  • 19 Hall A R, Dix B R, O'Carroll S J, Braithwaite A W. p53-dependent cell death/apoptosis is required for a productive adenovirus infection.  Nat Med . 1998;  4 1068-1072
  • 20 Harada J N, Berk A J. p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication.  J Virol . 1999;  73 5333-5344
  • 21 Rothmann T, Hengstermann A, Whitaker N J, Scheffner M, zur Hausen H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells.  J Virol . 1998;  72 9470-9478
  • 22 Gibbs J B, Oliff A, Kohl N E. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic.  Cell . 1994;  77 175-178
  • 23 Mukhopadhyay T, Tainsky M, Cavender A. Specific inhibition of K-ras expression and tumorigenicity of lung cancer cells by antisense RNA.  Cancer Res . 1991;  51 1744-1748
  • 24 Roth J. Modification of mutant K-ras gene expression in non-small cell lung cancer (NSCLC).  Hum Gene Ther . 1996;  7 875-889
  • 25 Yamamoto T, Ikawa S, Akiyama T. Similarity of protein encoded by the human c-erbB-2 gene to the epidermal growth factor receptor.  Nature . 1986;  319 230-234
  • 26 Noguchi M, Murahami M, Bennett W. Biologic consequences of over-expression of a transfected c-erbB-2 gene in immortalized human bronchial epithelial cells.  Cancer Res . 1993;  53 2035-2043
  • 27 Deshane J, Siegal G, Alvarez R. Targeted tumor killing via an intracellular antibody against erbB-2.  J Clin Invest . 1995;  96 2980-2989
  • 28 Shapiro G I, Edwards C D, Kobzik L. Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines.  Cancer Res . 1995;  55 505-509
  • 29 Craig C, Kim M, Ohri E. Effects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells.  Oncogene . 1998;  16 265-272
  • 30 Pezzella F, Turley H, Kuzu I. bcl-2 Protein in non-small cell lung carcinoma.  NEJM . 1993;  329 690-694
  • 31 Ziegler A, Luedke G H, Fabbro D, Altmann K H, Stahel R A, Zangemeister-Wittke U. Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the Bcl-2 coding sequence.  J Natl Cancer Inst . 1997;  89 1027-1036
  • 32 Fearon E, Pardoll D, Itaya T. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response.  Cell . 1990;  60 397-403
  • 33 Allione A, Consalvo M, Nanni P. Immunizing and curative potential of replicating and nonreplicating murine mammary adenocarcinoma cells engineered with interleukin (IL)-2, IL-4, IL-6, IL-7, IL-10, tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, and gamma-interferon gene or admixed with conventional adjuvants.  Cancer Research . 1994;  54 6022-6026
  • 34 Bottazzi B, Walter S, Govoni D, Colotta F, Mantovani A. Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma.  J Immunol . 1992;  148 1280-1285
  • 35 Colombo M P, Ferrari G, Stoppacciaro A. Granulocyte colony-stimulation factor (G-CSF) gene transfer suppress tumorigenicity of a murine adenocarcinoma in vivo.  J Exp Med . 1991;  173 889-897
  • 36 Heike Y, Takahashi M, Kanegae Y, Sato Y, Saito I, Saijo N. Interleukin-2 gene transduction into freshly isolated lung adenocarcinoma cells with adenoviral vectors.  Human Gene Ther . 1997;  8 1-14
  • 37 Pardoll D M. Paracrine cytokine adjuvants in cancer immunotherapy.  Annu Rev Immunol . 1995;  13 399-415
  • 38 Zitvogel L, Mayordomo J I, Tjandrawan T. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: Dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines.  J Exp Med . 1996;  183 87-97
  • 39 Zitvogel L, Tahara H, Robbins P. Cancer immunotherapy of established tumors with IL-12: Effective delivery by genetically engineered fibroblasts.  J Immunol . 1995;  155 1393-1403
  • 40 Dranoff G, Jaffee E, Lazenby A. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity.  Proc Natl Acad Sci USA . 1993;  90 3539-3543
  • 41 Sharma S, Wang J, Huang M. Interleukin-7 gene transfer in non-small cell lung cancer decreases tumor proliferation, modifies cell surface molecule expression, and enhances antitumor reactivity.  Can Gene Ther . 1996;  3 302-313
  • 42 Sica D, Rayman P, Stanley J. Interleukin 7 enhances the proliferation and effector function of tumor-infiltrating lymphocytes from renal-cell carcinoma.  International J Cancer . 1993;  53 941-947
  • 43 Welch P A, Namen A E, Goodwin R G, Armitage R, Cooper M D. Human IL-7: A novel T cell growth factor.  J Immunol . 1989;  143 3562-3567
  • 44 Chazen G, Pereira G, Le Gros G, Gillis S, Shevach E. Interleukin 7 is a T cell growth factor.  Proc Natl Acad Sci USA . 1989;  86 5923-5927
  • 45 Jicha D L, Mule J J, Rosenberg S A. Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy.  J Exp Med . 1991;  174 1511-1515
  • 46 Stotter H, Custer M C, Bolton E S, Guedez L, Lotze M T. IL-7 induces human lymphokine-activated killer cell activity and is regulated by IL-4.  J Immunol . 1991;  146 150-155
  • 47 Dubinett S M, Huang M, Dhanani S, Wang J, Beroiza T. Down-regulation of macrophage transforming growth factor-βmessenger RNA expression by interleukin-7.  J Immunol . 1993;  151 6670-6680
  • 48 Dubinett S, Huang M, Dhanani S. Down-regulation of murine fibrosarcoma transforming growth factor-β1 expression by interleukin 7.  JNCI . 1995;  87 593-597
  • 49 Miller P, Sharma S, Stolina M. Intratumoral administration of adenoviral interleukin-7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication.  Hum Gene Ther . 2000;  11 53-65
  • 50 Sharma S, Miller P, Stolina M. Multi-component gene therapy vaccines for lung cancer: Effective eradication of established murine tumors in vivo with interleukin 7/herpes simplex thymidine kinase-transduced autologous tumor and ex vivo-activated dendritic cells.  Gene Ther . 1997;  4 1361-1370
  • 51 Huang M, Wang J, Lee P. Human non-small cell lung cancer cells express a type 2 cytokine pattern.  Cancer Res . 1995;  55 3847-3853
  • 52 Kobayashi M, Fitz L, Ryan M. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes.  J Exp Med . 1989;  170 827
  • 53 Chan S H, Perussia B, Gupta J W. Induction of interferon γproduction by natural killer cell stimulatory factor: Characterization of the responder cells and synergy with other inducers.  J Exp Med . 1991;  173 869
  • 54 Chehimi J, Starr S, Frank I. Natural killer (NK) cell stimulatory factor increases the cytotoxic activity of NK cells from both healthy donors and human immunodeficiency virus-infected patients.  J Exp Med . 1992;  175 789
  • 55 Gately M K, Wolitzky A G, Quinn P M, Chizzonite R. Regulation of human cytolytic lymphocyte responses by interleukin-12.  Cell Immunol . 1992;  143 127-142
  • 56 Yao L, Sgadari C, Furuke K, Bloom E T, Teruya-Feldstein J, Tosato G. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12.  Blood . 1999;  93 1612-1621
  • 57 Angiolillo A, Sgadari C, Tosato G. A role for the interferon-inducible protein 10 in inhibition of angiogenesis by interleukin-12.  Ann N Y Acad Sci . 1996;  795 158-167
  • 58 Brunda M J, Luistro L, Warrier R R. Antitumor and antimetastatic activity of interleukin 12 against murine tumors.  J Exp Med . 1993;  178 1223-1230
  • 59 Nastala C L, Edington H D, McKinney T G. Recombinant IL-12 administration induces tumor regression in association with IFN-γproduction.  J Immunol . 1994;  153 1697-1706
  • 60 Haku T, Yanagawa H, Nabioullin R, Takeuchi E, Sone S. Interleukin-12-mediated killer activity in lung cancer patients.  Cytokine . 1997;  9 846-852
  • 61 Yoshino I, Goedegebuure P S, Peoples G E. HER2/neu-derived peptides are shared antigens among human non-small cell lung cancer and ovarian cancer.  Cancer Res . 1994;  54 3387-3390
  • 62 Restifo N P, Esquivel F, Kawakami Y. Identification of human cancers deficient in antigen processing.  J Exp Med . 1993;  177 265-272
  • 63 Huang A YC, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens.  Science . 1994;  264 961-965
  • 64 Caux C, Liu Y, Banchereau J. Recent advances in the study of dendritic cells and follicular dendritic cells.  Immunol Today . 1995;  16 2-4
  • 65 Steinman R M. The dendritic cell system and its role in immunogenicity.  Annu Rev Immunol . 1991;  9 271-296
  • 66 Hsu F, Benike C, Fagnoni F. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells.  Nature Med . 1996;  2 52-58
  • 67 Nestle F, Alijagic S, Gilliet M. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells.  Nature Med . 1998;  4 328-332
  • 68 Ribas A, Butterfield L, McBride W. Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells.  Cancer Res . 1997;  57 2865-2869
  • 69 Miller P W, Sharma S, Stolina M. Dendritic cells augment granulocyte-macrophage colony-stimulating factor (GM-CSF)/herpes simplex virus thymidine kinase-mediated gene therapy of lung cancer.  Cancer Gene Ther . 1998;  5 380-389
  • 70 Chouaib S, Assellin-Paturel C, Mami-Chouaib F, Caignard A, Blay J. The host-tumor immune conflict: From immunosuppression to resistance and destruction.  Immunol Today . 1997;  18 493-497
  • 71 Huang M, Stolina M, Sharma S. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: Up-regulation of interleukin 10 and down-regulation of interleukin 12 production.  Cancer Res . 1998;  58 1208-1216
  • 72 Stolina M, Sharma S, Lin Y. Specific inhibition of cyclooxygenase 2 restores antitumor immunity by altering the balance of IL-10 and IL-12 synthesis.  J Immunol . 2000;  164 361-370
  • 73 Handel-Fernandez M E, Ching X, Herbert L M, Lopez D M. Down-regulation of IL-12, not a shift from a T helper-1 to a T helper-2 phenotype, is responsible for impaired IFN-γ production in mammary tumor-bearing mice.  J Immunol . 1997;  158 280-286
  • 74 Alleva D G, Burger C J, Elgert K D. Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production: Role of tumor-derived IL-10, TGF-beta and prostaglandin E2.  J Immunol . 1994;  153 1674
  • 75 Huang M, Sharma S, Mao J T, Dubinett S M. Non-small cell lung cancer-derived soluble mediators and prostaglandin E2 enhance peripheral blood lymphocyte IL-10 transcription and protein production.  J Immunol . 1996;  157 5512-5520
  • 76 Bolon I, Devouassoux M, Robert C, Moro D, Brambilla C, Brambilla E. Expression of urokinase-type plasminogen activator, stromelysin 1, stromelysin 3, and matrilysin genes in lung carcinomas.  Am J Pathol . 1997;  150 1619-1629
  • 77 Garbisa S, Scagliotti G, Masiero L. Correlation of serum metalloproteinase levels with lung cancer metastasis and response to therapy.  Cancer Res . 1992;  52 4548-4549
  • 78 Kawano N, Osawa H, Ito T. Expression of gelatinase A, tissue inhibitor of metalloproteinases-2, matrilysin, and trypsin(ogen) in lung neoplasms: An immunohistochemical study.  Hum Pathol . 1997;  28 613-622
  • 79 Mari B, Anderson I, Mari S. Stromelysin-3 is induced in tumor/stroma cocultures and inactivated via a tumor-specific and basic fibroblast growth factor-dependent mechanism.  J Biol Chem . 1998;  273 618-626
  • 80 DeClerck Y, Perez N, Shimada H, Boone T, Langley K, Taylor S. Inhibition of invasion and metastatis in cells transfected with an inhibitor of metalloproteinases.  Cancer Res . 1992;  52 701-708
  • 81 Noel A, Lefebvre O, Maquoi E. Stromelysin-3 expression promotes tumor take in nude mice.  J Clin Invest . 1996;  97 1924-1930
  • 82 Skobe M, Rockwell P, Goldstein N, Vosseler S, Fusenig N. Halting angiogenesis suppresses carcinoma cell invasion.  Nature Med . 1997;  3 1222-1227
  • 83 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease.  Nat med . 1995;  1 27-31
  • 84 Fontanini G, Vignati S, Lucchi M. Neoangiogenesis and p53 protein in lung cancer: Their prognostic role and their relation with vascular endothelial growth factor (VEGF) expression.  Br J Cancer . 1997;  75 1295-1301
  • 85 O'Reilly M S, Holmgren L, Shing Y. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma.  Cell . 1994;  79 315-328
  • 86 O'Reilly M, Boehm T, Shing Y. Endostatin: And endogenous inhibitor of angiogenesis and tumor growth.  Cell . 1997;  88 277-285
  • 87 Rak J, Kerbel R. Treating cancer by inhibiting angiogenesis: New hopes and potential pitfalls.  Cancer Metastasis Rev . 1996;  15 231-236
  • 88 Cyster J. Chemokines and cell migration in secondary lymphoid organs.  Science . 1999;  286 2098-2102
  • 89 Ohta Y, Watanabe Y, Murakami S. Vascular endothelial growth factor and lymph node metastasis in primary lung cancer.  Br J Cancer . 1997;  76 1041-1045
  • 90 Arenberg D, Polverini P, Kunkel S. The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer.  J Leukocyte Biol . 1997;  62 554-562
  • 91 Arenberg D, Kunkel S, Polverini P, Glass M, Burdick M, Strieter R. Inhibition of Interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice.  J Clin Invest . 1996;  97 2792-2802
  • 92 Hynes R. Integrins: Versatility, modulation, and signaling in cell adhesion.  Cell . 1992;  69 11-25
  • 93 Leavesley P, Schwartz M, Rosenfeld M, Cheresh D. Integrin b1- and b3-mediated endothelial cell migration is triggered through distinct signaling mechanisms.  J Cell Biol . 1993;  121 163-170
  • 94 Brooks P, Montgomery A, Rosenfeld M. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels.  Cell . 1994;  79 1157-1164
  • 95 Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model.  Science . 1998;  279 377-380
  • 96 Wang C-Y, Mayo M W, Baldwin A SJ. TNF- and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-κB.  Science . 1996;  274 784-787
  • 97 Batra R K, Guttridge D C, Brenner D A, Dubinett S M, Baldwin A S, Boucher R C. IkappaBalpha gene transfer is cytotoxic to squamous-cell lung cancer cells and sensitizes them to tumor necrosis factor-alpha-mediated cell death.  Am J Respir Cell Mol Biol . 1999;  21 238-245
  • 98 Kim J H, Kim S H, Brown S L, Freytag S O. Selective enhancement be an antiviral agent of the radiation-induced cell killing of human glioma cells transduced with HSV-tk gene.  Cancer Res . 1994;  54 6053-6056
  • 99 McBride W, Dougherty G. Radiotherapy for genes that cause cancer.  Nature Med . 1995;  1 1215-1217
  • 100 Hanna N, Mauceri H, Wayne J, Hallahan D, Kufe D, Weichselbaum R. Virally directed cytosine deaminase/5-fluorocytosine gene therapy enhances radiation response in human cancer xenografts.  Cancer Res . 1997;  57 4205-4209
  • 101 McIlwrath A, Vasey P, Ross G, Brown R. Cell cycle arrests and radiosensitivity of human tumor cell lines: Dependence on wild-type p53 for radiosensitivity.  Cancer Res . 1994;  54 3718-3722
  • 102 Gallardo D, Drazen Z E, McBride W H. Adenovirus-based Transfer of Wild-Type p53 Gene Increases Ovarian Tumor Radiosensitivity.  Cancer Res . 1996;  56 4891-4893
  • 103 Nguyen D, Spitz F, Yen N, Cristiano R, Roth J. Gene therapy for lung cancer: Enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer.  J Thorac Cardiovasc Surg . 1996;  112 1372-1377
  • 104 Boris-Lawrie K, Temin H. The retroviral vector. Replication cycle and safety considerations for retrovirus-mediated gene therapy.  Ann NY Acad Sci . 1994;  716 59-70
  • 105 Kay M, Liu D, Hoogerbrugge P. Gene therapy.  Proc Natl Acad Sci USA . 1997;  94 12744-12746
  • 106 Naldini L, Blomer U, Gallay P. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.  Science . 1996;  272 263-267
  • 107 Naldini L, Blomer U, Gage F, Trono D, Verma I. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector.  Proc Natl Acad Sci USA . 1996;  93 11382-11388
  • 108 Kasahara N, Dozy A, Kan Y. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions.  Science . 1994;  266 1373-1376
  • 109 Batra R, Olsen J, Pickles R, Hoganson S, Boucher R. Transduction of non-small cell lung cancer cells by adenoviral and retroviral vectors.  Am J Respir Cell Mol Biol . 1998;  18 402-410
  • 110 Mastrangeli A, Danel C, Rosenfeld M. Diversity of airway epithelial cell targets for in vivo recombinant adenovirus-mediated gene transfer.  J Clin Invest . 1993;  91 225-234
  • 111 Dai Y, Schwarz E, Gu D, Zhang W, Sarvetnick N, Verma I. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: Tolerization of factor IX and vector antigens allows for long-term expression.  Proc Natl Acad Sci USA . 1995;  92 1401-1405
  • 112 Yang Y, Li Q, Ertl H, Wilson J. Cellular and humoral immune responses to viral antigens create barriers to long-directed gene therapy with recombinant adenoviruses.  J Virol . 1995;  69 2004-2015
  • 113 Yang Y, Su Q, Wilson J. Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs.  J Virol . 1996;  70 7209-7212
  • 114 Mitani K, Graham F, Caskey C, Kochanek S. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector.  Proc Natl Acad Sci USA . 1995;  92 3854-3858
  • 115 Jooss K, Yang Y, Wilson J M. Cyclophosphomide diminishes inflammation and prolongs transgene expression following delivery of adenoviral vectors to mouse liver and lung.  Hum Gene Ther . 1996;  7 1555-1566
  • 116 Bergelson J M, Cunningham J A, Droguett G. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5.  Science . 1997;  275 1320-1323
  • 117 Douglas J T, Rogers B E, Rosenfeld M E, Michael S I, Feng M, Curiel D T. Targeted gene delivery by tropism-modified adenoviral vectors.  Nat Biotechnol . 1996;  14 1574-1578
  • 118 Wickham T, Roelvink P, Brough D, Kovesdi I. Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types.  Nature Biotechnol . 1996;  14 1570-1573
  • 119 Tursz T, Cesne A, Baldeyrou P. Phase I study of a recombinant adenovirus-mediated gene transfer in lung cancer patients.  J Natl Cancer Inst . 1996;  88 1857-1863
  • 120 Gahery-Segard H, Molinier-Frenkel V, Le Boulaire C. Phase I trial of recombinant adenovirus gene transfer in lung cancer: Longitudinal study of the immune responses to transgene and viral products.  J Clin Invest . 1997;  100 2218-2226
  • 121 Sterman D, Treat J, Litzky L. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patient with localized malignancy: Results of a phase I clinical trial in malignant mesothelioma.  Hum Gene Ther . 1998;  9 1083-1092
  • 122 Batra R, Olsen J, Hoganson D, Caterson B, Boucher R. Retroviral gene transfer is inhibited by chondroitin sulfate proteoglycans/glycosaminoglycans in malignant pleural effusions.  J Biol Chem . 1997;  272 11736-11743
  • 123 Crystal R G. Transfer of genes to humans: Early lessons and obstacles to success.  Science . 1995;  270 404-410
  • 124 Jain R K. Barriers to drug delivery in solid tumors.  Sci Am . 1994;  271 58-65
    >