Plant Biol (Stuttg) 2000; 2(1): 63-67
DOI: 10.1055/s-2000-9149
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Evolution of Chlorophyll Degradation: The Significance of RCC Reductase

S. Hörtensteiner 1 , S. Rodoni 1 , M. Schellenberg 1 , F. Vicentini 1 , O. I. Nandi 2 , Y-L. Qui 2 , and Ph. Matile 1
  • 1 Institut für Pflanzenbiologie, Universität Zürich, Zürich, Switzerland
  • 2 Institut für Systematische Botanik, Universität Zürich, Zürich, Switzerland
Further Information

Publication History

May 28, 1999

October 18, 1999

Publication Date:
31 December 2000 (online)

Abstract:

In angiosperms the key process of chlorophyll breakdown in senescing leaves is catalyzed by pheophorbide a oxygenase and RCC reductase which, in a metabolically channeled reaction, cleave the porphyrin macrocycle and produce a colourless primary catabolite, pFCC. RCC reductase is responsible for the reduction of the C20/C1 double bond of the intermediary catabolite, RCC. Depending on plant species, RCC reductase produces one of the two C1 stereoisomers, pFCC-1 or pFCC-2. Screening of a large number of taxa for the type of RCCR revealed that the isomer produced is uniform within families. It also revealed that type RCCR-2 is predominant; RCCR-1 seems to represent a recent derivation which in unrelated lineages has evolved independently from RCCR-2. A third type of pFCC was produced by RCCR from basal pteridophytes and some gymnosperms; its structure is unknown. Collectively, the data suggest that the pathway of chlorophyll breakdown is very conserved in vascular plants. RCCR appears to represent a decisive addition to the catabolic pathway: it allows terrestrial plants to metabolize the porphyrin part of the chlorophyll molecule to photodynamically inactive final products that are stored in the vacuoles of senescing mesophyll cells.

Abbreviations:

Chl: Chlorophyll FCC: Fluorescing chlorophyll catabolite pFCC: primary FCC NCC: Nonfluorescing chlorophyll catabolite PaO: Pheophorbide a oxygenase RCC: Red chlorophyll catabolite RCCR: RCC reductase

References

  • 01 Curty,  C.,, Engel,  N.,, and Gossauer,  A.. (1995);  Evidence for a monooxygenase-catalyzed primary process in the catabolism of chlorophyll.  FEBS Lett.. 364 41-44
  • 02 Chaw,  S.-M.,, Zharkikh,  A.,, Sung,  H.-M.,, Lau,  T.-C.,, and Lee,  W. H.. (1997);  Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences.  Mol. Biol. Evol.. 14 56-68
  • 03 Doi,  M.,, Shima,  S.,, Egashira,  T.,, Nakamura,  K.,, and Okayama,  S.. (1997);  New bile pigment excreted by a Chlamydomonas reinhardtii mutant: A possible breakdown catabolite of chlorophyll a. .  J. Plant Physiol.. 150 504-508
  • 04 Engel,  N.,, Jenny,  T. A.,, Mooser,  V.,, and Gossauer,  A.. (1991);  Chlorophyll catabolism in Chlorella protothecoides. Isolation and structural elucidation of a red bilin derivative.  FEBS Lett.. 293 131-133
  • 05 Engel,  N.,, Curty,  C.,, and Gossauer,  A.. (1996);  Chlorophyll catabolism in Chlorella protothecoides. 8. Facts and artifacts.  Plant Physiol. Biochem.. 34 77-83
  • 06 Haidl,  H.,, Knodelmayr,  K.,, Rüdiger,  W.,, Scheer,  S.,, and Ullrich,  J.. (1985);  Degradation of bacteriochlorophyll a in Rhodopseudomonas sphaeroides R 26.  Z. Naturforsch.. 40 c 658-692
  • 07 Hasebe,  M.,, Wolf,  P. G.,, Pryer,  K. M.,, Uedo,  K.,, Ito,  M.,, Sano,  R.,, Gastony,  G. J.,, Yokoyama,  J.,, Manhart,  J. R.,, Murakami,  N.,, Crane,  E. H.,, Haufler,  C. H.,, and Hauk,  W. D.. (1995);  Fern phylogeny based on rbcL nucleotide sequences.  Amer. Fern J.. 85 134-181
  • 08 Hörtensteiner,  S.,, Vicentini,  F.,, and Matile,  P.. (1995);  Chlorophyll breakdown in senescent leaves: Enzymic cleavage of phaeophorbide a in vitro. .  New Phytol.. 129 237-246
  • 09 Hörtensteiner,  S.,, Wüthrich,  K. L.,, Matile,  P.,, Ongania,  K.-H.,, and Kräutler,  B.. (1998);  The key step in chlorophyll breakdown in higher plants: cleavage of pheophorbide a macrocycle by a monooxygenase.  J. Biol. Chem.. 273 15335-15339
  • 10 Marquart,  J.. (1998);  Effects of carotenoid depletion on the photosynthetic apparatus of a Galdieria sulphururia (Rhodophyta) strain that retains its photosynthetic apparatus in the dark.  J. Plant Physiol.. 152 372-380
  • 11 Matile,  P., and Schellenberg,  M.. (1996);  The cleavage of phaeophorbide a is located in the envelope of barley gerontoplasts.  Plant Physiol. Biochem.. 34 55-59
  • 12 Matile,  P.,, Hörtensteiner,  S.,, and Thomas,  H.. (1999);  Chlorophyll degradation.  Annu. Rev. Plant Physiol. Plant Mol. Biol.. 50 67-95
  • 13 Miller,  L. S., and Holt,  S. C.. (1977);  Effect of carbon dioxide on pigment and membrane content in Synechococcus lividus. .  Arch. Microbiol.. 115 185-198
  • 14 Miyake,  K.,, Ohtomi,  M.,, Yoshizawa,  H.,, Sakamoto,  Y.,, Nakayama,  K.,, and Okada,  M.. (1995);  Water soluble pigments containing xylose and glucose in gametangia of the green alga, Bryopsis maximum. .  Plant Cell Physiol.. 36 109-113
  • 15 Mühlecker,  W.,, Ongania,  K.-H.,, Kräutler,  B.,, Matile,  P.,, and Hörtensteiner,  S.. (1997);  Tracking down chlorophyll breakdown in plants: elucidation of the constitution of a fluorescent chlorophyll catabolite.  Angew. Chem. Int. Ed. Engl.. 36 401-404
  • 16 Oshio,  Y., and Hase,  E.. (1969);  Studies on red pigments excreted by cells of Chlorella protothecoides during the process of bleaching induced by glucose or acetate. I. Chemical properties of the red pigments.  Plant Cell Physiol.. 10 41-49
  • 17 Raubeson,  L. A., and Jansen,  R. K.. (1992);  Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants.  Science. 255 1697-1699
  • 18 Rodoni,  S.,, Mühlecker,  W.,, Anderl,  M.,, Kräutler,  B.,, Moser,  D.,, Thomas,  H.,, Matile,  P.,, and Hörtensteiner,  S.. (1997 a);  Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymic steps.  Plant Physiol.. 115 669-676
  • 19 Rodoni,  S.,, Vicentini,  F.,, Schellenberg,  M.,, Matile,  P.,, and Hörtensteiner,  S.. (1997 b);  Partial purification and characterization of RCC reductase, a stroma protein involved in chlorophyll breakdown.  Plant Physiol.. 115 677-682
  • 20 Savolainen,  V.,, Chase,  M. W.,, Hoot,  S. B.,, Morton,  C. M.,, Soltis,  D. E.,, Bayer,  C.,, Fay,  M. F.,, De Bruijn,  A. Y.,, Sullivan,  S.,, and Qiu,  Y.-L.. (1999);  Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences.  System. Biol..
  • 21 Schoch,  S.,, Scheer,  H.,, Schiff,  J. A.,, Rüdiger,  W.,, and Siegelman,  H. W.. (1981);  Pyropheophytin a accompanies pheophytin a in darkened light grown cells of Euglena. .  Z. Naturforsch.. 36 c 827-833
  • 22 Spooner,  N.,, Keely,  B. J.,, and Maxwell,  J. R.. (1994 a);  Biologically mediated defunctionalization of chlorophyll in the aquatic environment. 1. Senescence decay of the diatom Phaeodactylum tricornutum. .  Org. Geochem.. 21 509-516
  • 23 Spooner,  N.,, Harvey,  H. R.,, Pearce,  G. E. S.,, Eckardt,  C. B.,, and Maxwell,  J. R.. (1994 b);  Biological defunctionalization of chlorophyll in the aquatic environment. 2. Action of endogenous algal enzymes and aerobic bacteria.  Org. Geochem.. 22 773-780
  • 24 Vicentini,  F.. (1996) Seneszenz und Blattgrün: Enzyme des Chlorophyllabbaus. University of Zürich; Ph.D. Thesis
  • 25 Ziegler,  R.,, Blaheta,  A.,, Guha,  N.,, and Schönegge,  B.. (1988);  Enzymatic formation of pheophorbide and pyropheophorbide during chlorophyll degradation in a mutant of Chlorella fusca SHIHIRA et KRAUS.  J. Plant Physiol.. 132 327-333

Ph. Matile

Institute of Plant Biology University of Zürich

Zollikerstrasse 107

8008 Zürich

Switzerland

Section Editor: T. Stuessy

Email: phibus@botinst.unizh.ch

    >