Thorac Cardiovasc Surg 2000; 48(5): 263-268
DOI: 10.1055/s-2000-7879
Original Cardiovascular
Original Paper
© Georg Thieme Verlag Stuttgart · New York

Uncontrolled Reoxygenation by Initiating Cardiopulmonary bypass is Associated with Higher Protein S100 in Cyanotic Versus Acyanotic Patients

G. Matheis1 , U. Abdel-Rahman1 , S. Braun1 , G. Wimmer-Greinecker1 , A. Esmaili2 , U. Seitz2 , C. K. Bastanier2 , A. Moritz1 , R. Hofstetter2
  • 1Department of Thoracic and Cardiovascular Surgery
  • 2Department of Pediatric Cardiology
  • Johann Wolfgang Goethe University, Frankfurt am Main, Germany
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Background: The systemic reoxygenation injury produced by initiating cardiopulmonary bypass (CPB) in infants with cyanotic heart disease may be associated with cerebral dysfunction and injury. Increased protein S100 (S100) serum levels may indicate cerebral and blood brain barrier damage as well as inflammatory changes, therefore serving to quantify these changes. The present clinical study assessed S100 in cyanotic patients undergoing CPB with normoxic versus hyperoxic paO2 in acyanotic cases and in controls without CPB. Methods: 43 patients with congenital heart disease aged 5 days to 15 years (mean 4.4 years) were enrolled consecutively and divided in four groups: (1) Cyanotic infants undergoing controlled normoxic reoxygenation on CPB (n = 12), (2) cyanotic infants undergoing uncontrolled hyperoxic reoxygenation on CPB (n = 9), (3) acyanotic infants operated with CPB (n = 16) and (4) patients operated without CPB (n = 6). Blood samples were collected after induction of anesthesia (A), up to 4 hours after surgery (B) and at postoperative day one (C). Results: Preoperative S100 serum levels [µg/l] in all groups were below clinical relevance. S100 increased markedly after surgery in groups 1 and 2. Differences in postoperative S100 levels were significant between groups 1 (0.45 ± 0.13) and 3 (0.35 ± 0.09; p = 0.018), between groups 2 (1.41 ± 0.47) and 3 (p = 0.01), and between groups 2 and 4 (0.29 ± 0.09; p = 0.045). There were no significant differences in postoperative S100 levels (B) between groups 1 and 2 (p = 0.05), groups 1 and 4 (p = 0.05), or groups 3 and 4 (p = 0.93). Conclusion: Uncontrolled hyperoxic reoxygenation on CPB for surgical correction of congenital heart defects is associated with higher S100 levels in cyanotic infants as compared to acyanotic patients undergoing comparable operations.

References

  • 1 Ferry P C. Neurologic sequelae of cardiac surgery in children.  Am J Dis Child. 1987;  141 309-312
  • 2 Bellinger D C, Rappaport L A, Wypij D, Wernovsky G, Newburger J W. Patterns of developmental dysfunction after surgery during infancy to correct transposition of the great arteries.  J Dev Behav Ped. 1997;  18 75-83
  • 3 Morita K, Ihnken K, Buckberg G D, Sherman M P, Young H H. Studies of hyoxemic/reoxygenation injury without aortic clamping. XI. Importance of avoiding perioperative hyperoxemia in the setting of previous cyanosis.  J Thorac Cardiovasc Surg. 1995;  11 1235-1244
  • 4 Del Nido P, Mickle D, Wilson O ,. et al . Evidence of myocardial free radical injury during elective repair of tetralogy of Fallot.  Circulation. 1987;  76 ((Suppl.)) V174-V179
  • 5 Kirklin J W, Barratt-Boyes B G. Cardiac Surgery: morphology, diagnostic criteria, natural history, techniques, results and indication. New York, Edinburgh, London, Madrid, Melbourne, Tokyo; Churchill Livingstone Inc. 1993: 77
  • 6 Buckberg G. Studies of hypoxemic/reoxygenation injury: I. Linkage between cardiac function and oxidant damage.  J Thorc Cardiovasc Surg. 1995;  103 73-7
  • 7 Newburger J W, Jonas R A, Wernovsky G. et al . A comparison of the perioperative neurological effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery.  N Engl J Med. 1993;  329 1057-1064
  • 8 Jonas R A. Hypothermia, circulatory arrest, and the pediatric brain.  J Cardiothorac Vasc Anesth. 1996;  1 ((1)) 66-74
  • 9 Westaby S, Johnsson P, Parry A J. et al . Serum S100 Protein: A potential marker for cerebral events during cardiopulmonary bypass.  Ann Thorac Surg. 1996;  61 88-92
  • 10 Lindberg L, Olsson A -K, Anderson K, Jögi P. Serum S- 100 protein levels after pediatric cardiac operations: a possible new marker for postperfusion cerebral injury.  J Thorac Cardiovasc Surg. 1998;  116 281-285
  • 11 Abdul-Khaliq H, Alexi-Meskishvilli V, Lange P E. Serum S- 100 protein levels after pediatric cardiac surgery: a possible new marker for postperfusion cerebral injury.  J Thorac Cardiovasc Surg. 1999;  117 843-844
  • 12 Li K, Mickle D AG, Wilson G JO. et al . Effect of oxygen tension on the anti-antioxidant enzyme activities of tetralogy of Fallot ventricular myocytes.  J Mol Cell Cardiol. 1989;  21 567-575
  • 13 van der Linden J, Stensved P, Lindblom D, Hansson H O. Clinical factors influencing the release of S100b during coronary artery bypass and valve surgery.  J Cardiothorac Vasc Anesth. 1996;  1 120-126
  • 14 Baziel G, van Engelen B G, Lamers K J. Age-related changes of neuron specific enolase, S- 100, and myelin basic protein concentrations in cerebrospinal fluid.  Clin Chem. 1992;  38 813-816
  • 15 Smith P LC. Cerebral dysfunction after cardiac surgery: closing address.  Ann Thorac Surg. 1995;  59 1359-1362
  • 16 Rodewald G, Meffert H -J, Emskötter T. et al . Head and heart - neurological and pyschological reactions to open heart surgery.  Thorac Cardiovasc Surg. 1998;  36 254-261

Georg MatheisMD 

Thoracic and Cardiovascular Surgery J. W. Goethe University

Theodor-Stern-Kai 7

60590 Frankfurt am Main

Germany

Phone: + 49 69 6301 6141

Fax: + 49 69 6301 5849

    >