Pharmacopsychiatry 2000; 33(Suppl 1): 34-42
DOI: 10.1055/s-2000-7660
Review
© Georg Thieme Verlag Stuttgart · New York

Novel Antipsychotics and Extrapyramidal Side Effects. Theory and Reality

J. Horácek
  • Prague Psychiatric Centre and the 3rd Faculty of Medicine of Charles University, Czech Republic
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Novel antipsychotics are less likely to produce extrapyramidal symptoms (EPS). The superior EPS profile of these drugs compared with that of low-potency classic antipsychotics does not seem to be associated with an antimuscarinergic effect. Several other mechanisms could account for this typical feature of novel antipsychotics, which combines a strong antipsychotic effect with low liability to produce EPS. The hypotheses are based on either the receptor affinity or the topic selectivity of the drugs, but these effects are closely interconnected and it is not possible to separate them. For clozapine treatment, its very low D occupancy could explain the absence of EPS, but this does not account for the low EPS with other novel antipsychotics. The direct topic selectivity for extrastriatal D2 receptors and different distribution of the drug in the brain is less probable. The most plausible hypotheses are based on the concept of indirect topic selectivity for extrastriatal D2 receptors, mediated by high affinity for extrastriatal D2 receptors (D3, D4), 5-HT2A antagonism, α1 antagonism or muscarinergic antagonism at the limbic level. The D1 and indirect GABAergic antagonisms may play a role in the prevention of tardive dyskinesia. This paper briefly outlines the hypotheses and observations and summarizes the current knowledge of the occurrence of and risk for extrapyramidal side effects with novel antipsychotics.

References

  • 1 Anden N E, Stock G. Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system.  J Pharm Pharmacol. 1973;  25 346-348
  • 2 Arnt J, Skarsfeldt T. Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence.  Neuropsychopharmacology. 1998;  18 63-101
  • 3 Arya D K. Extrapyramidal symptoms with selective serotonin reuptake inhibitors.  Br J Psychiatry. 1993;  43 211-213
  • 4 Arvanitis L A, Miller B G. et al . Multiple fixed dose of “Seroquel” (quetiapine) in patients with acute exacerbation of schizophrenia: a comparison with haloperidol and placebo.  Biol Psychiatry. 1997;  42 233-246
  • 5 Ashby C R Jr, Edwards E, Wang R Y. Electrophysiological evidence for a functional interaction between 5-HT1A and 5-HT2A receptors in the rat medial prefrontal cortex: an iontophoretic study.  Synapse. 1994;  17 173-181
  • 6 Baldessarini R J, Tarazi F I. Brain dopamine receptors: a primer on their current status, basic and clinical.  Harv Rev Psychiatry. 1996;  3 301-325
  • 7 Beasley C M, Sanger W, Satterlee G. et al . Olanzapine versus placebo: results of a double-blind, fixed-dose olanzapine trial.  Psychopharmacology (Berl). 1996a;  124 159-167
  • 8 Beasley C M, Tollefson G, Tran P. et al . Olanzapine versus placebo and haloperidol: acute phase results of North American double-blind olanzapine trial.  Neurosychopharmacology. 1996b;  14 111-123
  • 9 Beasley C M, Hamilton S H, Crawford A M, Dellav M A, Tollefson G D, Tran P V, Blin O. et al . Olanzapine versus haloperidol: acute phase of the international double-blind olanzapine trial.  Eur Neuropsychopharmacol. 1997;  7 125-137
  • 10 Bersani G, Grispini A, Marini S, Pasini A, Valducci M, Ciani N. 5-HT2 antagonist ritanserin in neuroleptic-induced parkinsonism: a double-blind comparison with orphenadrine and placebo.  Clin Neuropharmacol. 1990a;  13 500-506
  • 11 Bersani G, Grispini A, Marini S, Pasini A, Valducci M, Ciani N. 5-HT2 antagonist ritanserin in neuroleptic-induced parkinsonism: a double blind comparison with orphenadrine and placebo.  Clin Neuropharmacol. 1990b;  13 500-506
  • 12 Bourdelais A Y, Deutch A J. The effects of haloperidol and clozapine on extracellular GABA levels in the prefrontal cortex of rat - an in vivo microdialysis study.  Cereb Cortex. 1994;  4 69-77
  • 13 Bristow U, Kramer M S, Kulagowski J. et al . Schizophrenia and L-745, 870, a novel dopamine D4 receptor antagonist.  Pharmacol Sci. 1997;  18 186-188
  • 14 Buckland P R, O'Donovan M C, McGuffin P. Clozapine and sulpiride up-regulate dopamine D(3) receptor mRNA levels.  Neuropharmacology. 1993;  32 901-907
  • 15 Chen J P, Paredes W, Van Praag H M, Lowinson J H, Gardner E L. Presynaptic dopamine release is enhanced by 5-HT3 receptor activation in medial prefrontal cortex of freely moving rats.  Synapse. 1992;  10 264-266
  • 16 Chiang C, Aston-Jones G. A 5-hydroxytryptamine-2 agonist augments gamma-aminobutyric acid and excitatory amino acid inputs to noradrenergic locus coeruelus neurons.  Neuroscience. 1993;  54 409-420
  • 17 Chiodo L A, Bunney B S. Possible mechanism by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons.  J Neurosci. 1999;  5 2539-2544
  • 18 Chouinard G, Jones B, Remington G J. et al . A Canadian multicentre placebo-controlled study of fixed doses of risperidone and haloperidol in the treatment of chronic schizophrenic patients.  J Clin Psychopharmacol. 1993;  13 25-40
  • 19 Claus A, Bollen J, DeCuyper H. et al . Risperidone versus haloperidol in the treatment of chronic schizophrenic inpatients: a multicentre double blind comparative study.  Acta Neurol Scand. 1992;  83 295-305
  • 20 Davies J, Tongroach P. Neuropharmacological studies on the nigro-striatal and raphe-striatal systems in the rat.  Eur J Pharmacol. 1978;  51 91-100
  • 21 Davies J, Janicak P G. Risperidone: a new, novel (and better?) antipsychotic.  Psychiatr Ann. 1996;  26 78-87
  • 22 Delay J, Deniker P, Harl J M. et al . Traitements d'états confusionnels par le chlorhydrate de di,thylaminopropyl-N-chloroph,nothiazine (4560 R).  Ann Med Psychol. 1952;  110 398-403
  • 23 Edwards E, Ashby C R Jr, Wang R Y. The effects of typical and atypical antipsychotic drugs on the stimulation of phosphoinositide hydrolysis produced by the 5-HT3 receptor agonist 2-methyl-serotonin.  Brain Res. 1991;  545 276-278
  • 24 Farde L, Nordstrom A L, Wiesel F A, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1-dopamine and D2-dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine - Relation to extrapyramidal side effects.  Arch Gen Psychiatry. 1992;  49 538-544
  • 25 Fitton A, Hell R. Clozapine: a review of its pharmacological properties and therapeutic use in schizophrenia.  Drug Evaluation. 1990;  40 722-797
  • 26 Fleischhacker W, Link C, Hurst B. ICL 204,636 (Seroquel) - a putative new antipsychotic: results from Phase III trials.  Schizophr Res. 1996;  18 132
  • 27 Gallhofer B, Bauer U, Lis S. et al . Cognitive dysfunction in schizophrenia: comparison of treatment with atypical antipsychotic agents and conventional neuroleptic drugs.  Eur Neuropsychopharmacol. 1996;  6 2-13,20
  • 28 Gardner E L, Walker L S, Paredes W. Clozapine's functional mesolimbic selectivity is not duplicated by the addition of anticholinergic action to haloperidol - a brain stimulation study in the rat.  Psychopharmacology. 1993;  110 119-124
  • 29 Gellman R L, Aghajanian G K. Serotonin 2 receptor-mediated excitation of interneurons in piriform cortex: antagonism by atypical antipsychotic drugs.  Neuroscience. 1994;  58 515-525
  • 30 Gefvert O, Bergstrom M, Langstrom B, Lundberg T, Lindstrom L, Yates R. Time course of central nervous dopamine-D-2 and 5-HT-2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel registered) in patients with schizophrenia.  Psychopharmacology. 1998;  135 119-126
  • 31 Goyer P F, Berridge M S, Morris E D, Semple W E, Compton-Toth B A, Schulz C, Wong D F. et al . PET measurement of neuroreceptor occupancy by typical and atypical neuroleptics.  J Nucl Med. 1996;  37 1122-1127
  • 32 Gunne L M, Andren P E. An animal model for coexisting tardive dyskinesia and tardive parkinsonism: a glutamate hypothesis for tardive dyskinesia.  Clin Neuropharmacol. 1993;  16 90-95
  • 33 Hagberg G, Gefvert O, Bergstrom M, Wieselgren I M, Lindstrom L, Wiesel F A, Langstrom B. N-[(11)C]methylspiperone PET, in contrast to [(11)C]raclopride, fails to detect D-2 receptor occupancy by an atypical neuroleptic.  Psychiatry Res Neuroimaging. 1998;  82 147-160
  • 34 Hoyberg O F, Fensbo C, Remvig J, Linjaerde O, Sloth-Nielsen M, Salvesen I. Risperidone and perphenazine in the treatment of chronic schizophrenic patients with acute exacerbations.  Acta Psychiatr Scand. 1993;  88 395-402
  • 35 Hoyer D, Martin G R. Classification and nomenclature of 5-HT receptors: a comment on current issues.  Behav Brain Res. 1996;  73 263-268
  • 36 Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine.  Arch Gen Psychiatry. 1988;  45 789-796
  • 37 Kapur S. A new framework for investigating antipsychotic action in humans: lessons from PET imaging.  Mol Psychiatry. 1998;  3 135-140
  • 38 Kapur S, Remington G, Zipursky R B, Wilson A A, Houle S. The D2-dopamine receptor occupancy of risperidone and its relationship to extrapyramidal symptoms: a PET study.  Life Science. 1995;  57 103-107
  • 39 Kapur S, Zipurski R, Remington G. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia.  Am J Psychiatry. 1999;  156 286-293
  • 40 Kapur S, Remington G. Serotonin - dopamine interaction and its relevance to schizophrenia.  Am J Psychiatry. 1996;  153 466-476
  • 41 Karler R, Calder L D, Thai L H, Bedingfield J B. The dopaminergic, glutamatergic, GABAergic bases for the action of amphetamine and cocaine.  Brain Res. 1995;  671 100-104
  • 42 Keck P, Buffenstein A, Ferguson I, Feighner I, Jaffe W, Harrigan E P, Morrisey M R. Ziprasidone 40 and 120 mg/day in the acute exacerbation of schizophrenia and schizoaffective disorder: a 4-week placebo-controlled trial.  Psychopharmacology (Berl). 1999;  149 173-184
  • 43 Kinon B J, Lieberman I A. Mechanism of action of atypical antipsychotic drugs - a critical analysis (review).  Psychopharmacology. 1996;  124 2-34
  • 44 Knable M B, Heinz A, Raedler T, Weinberger D R. Extrapyramidal side effects with risperidone and haloperidol at comparable D2 receptor occupancy levels.  Psychiatry Res. 1997;  75 91-101
  • 45 Kohen R, Metcalf M A, Khan N, Druck T, Huebner K, Lachowicz J E, Meltzer H Y, Sibley D R, Roth B L, Hamblin M W. Cloning, characterization, and chromosomal location of human 5-HT6 serotonin receptor.  J Neurochem. 1996;  66 47-56
  • 46 Kohler C, Orgen S O, Haglund L, Angeby T. Regional displacement by sulpiride of (3H) spiperone binding in vivo. Biochemical and behavioural evidence for a preferential action of limbic and nigral dopamine receptors.  Neurosci Lett. 1979;  13 51-56
  • 47 Kohler C, Haglund L, Ogren S O, Angeby T. Regional blockade by neuroleptic drugs of in vivo 3H-spiperone binding in the rat brain. Relation to blockade of apomorphine induced hyperactivity and stereotypies.  J Neural Transm. 1981;  52 163-173
  • 48 Kurz M, Hummer M, Oberbauer H. et al . Extrapyramidal side effects of clozapine and haloperidol.  Psychopharmacol. 1995;  118 52-56
  • 49 Lahti A C, Albert P K, Warfel D T. et al . Novel antidopaminergic strategies for the treatment of schizophrenia.  Schizophr Res. 1995;  15 157
  • 50 Lane R F, Blaha C D, Rivet J M. Selective inhibition of mesolimbic dopamine release following chronic administration of clozapine: involvement of alpha1-noradrenergic receptors demonstrated by in vivo voltametry.  Brain Res. 1988;  460 398-401
  • 51 Lejeune F, Audinot V, Gobert A, Rivet J M, Spedding M, Millan M J. Clozapine inhibits serotonergic transmission by an action at alpha(1)-adrenoreceptors not at 5-HT(1A) receptors.  Eur J Pharmacol. 1994;  260 79-83
  • 52 Leysen J E, Janssen P M F, Schotte A. et al . Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5HT2 receptors.  Psychopharmacology. 1993;  112 40-54
  • 53 Liebman J M, Gerhardt S C, Geber R. Effects of 5-HT1A agonists and 5-HT2 anatagonists on haloperidol-induced dyskinesias in squirrel monkeys: no evidence for reciprocal 5-HT-dopamine interaction.  Psychopharmacology (Berl). 1989;  97 456-461
  • 54 Magnusson O, Fowler C J, Kohler C, Ogren S O. Dopamine D2 receptors and dopamine metabolism. Relationship between biochemical and behavioural effects of substituted benzamide drugs.   Neuropharmacology. 1986;  25 187-197
  • 55 Marder S R. Risperidone: clinical development: North American results.  Clin Neuropharmacol. 1992;  15 (suppl 1 Pt A) 92A-93A
  • 56 Marin C, Parashos S A, Kaptzoglou-Logothetis V, Peppe A, Chase T N. D1 and D2 dopamine receptor-mediated mechanisms and behavioral supersensitivity.  Pharmacol Biochem Behav. 1993;  45 195-200
  • 57 Miller C H, Fleischhacker W W, Ehrmann H, Kane J M. Treatment of neuroleptic induced akathisia with the 5-HT2 antagonist ritanserin.  Psychopharmacol Bull. 1990;  26 373-376
  • 58 Miller C H, Mohr F, Umbrich D, Woerner M, Fleischacker W W, Lieberman J A. The prevalence of acute extrapyramidal signs and symptoms in patients treated with clozapine, risperidone, and conventional antipsychotics.  J Clin Psychiatry. 1998;  59 69-75
  • 59 Min S, Rhee C, Kim C. et al . Risperidone versus haloperidol in the treatment of chronic schizophrenic patients: a parallel group double blind comparative trial.  Yonsei Med J. 1993;  334 179-196
  • 60 Mrzljak L, Bergson C, Pappy M. et al . Localization of dopamine D4 receptors in GABAergic neurons of the primate brain.  Nature. 1996;  381 245-248
  • 61 Muramatsu M, Tmaki-Ohashi I, Usuki C, Araki H, Chaki S, Aihara H. 5-HT2 antagonist and minaprine block the 5-HT induced inhibition of dopamine release from rat brain striatal slices.  Eur J Pharmacol. 1988;  153 89-95
  • 62 Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B. 5-HT2 and D2-dopamine receptor occupancy in the living human brain.  Psychopharmacology. 1993;  110 265-272
  • 63 Nyberg S, Farde L, Halldin C, Dahl M L, Bertilsson L. D2 dopamine receptor occupancy during low-dose treatment with haloperidol decanoate.  Am I Psychiatry. 1995;  152 173-178
  • 64 Nyberg S, Nakashima Y, Nordstrom A L. et al . Positron emission tomography of in-vivo binding characteristics of atypical antipsychotic drugs. Review of D2 and 5-HT2 receptor occupancy studies and clinical response.  Br J Psychiatry. 1996;  168 (suppl 29) 40-44
  • 65 Ogren S O, Hall H, Kohler C, Magnusson O, Lindbom L O, Angeby K, Florvall L. Remoxipride, a new potential antipsychotic compound with selective antidopaminergic actions in the rat brain.  Eur J Pharmacol. 1984;  102 459-474
  • 66 Pehek E A. Local infusion of the serotonin antagonist ritanserin or ICS 205,930 increases in vivo dopamine release in the rat medial prefrontal cortex.  Synapse. 1996;  24 12-18
  • 67 Peuskens J. Risperidone in the treatment of patients with chronic schizophrenia: a multi-national, multi-centre, double blind, parallel group study versus haloperidol.  Br J Psychiatry. 1995;  166 712-726
  • 68 Peuskens J, Link C G G. A comparison of quetiapine and chlorpromazine in the treatment of schizophrenia.  Acta Psychiatr Scand. 1997;  96 265-273
  • 69 Pilowsky L S, Busatto G F, Taylor M, Costa D C, Sharma T, Sigmundsson T, Ell P J. et al . Dopamine D2 receptor occupancy in vivo by the novel atypical antipsychotic olanzapine - a 123I IBZM single photon emission tomography (SPET) study.  Psychopharmacology (Berl). 1996;  124 148-153
  • 70 Pirot S, Godbout R, Mantz J, Tassin J P, Glowinski J, Thierry A M. Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components.  Neuroscience. 1992;  49 857-865
  • 71 Rao T S, Contreras P C, Cler J A, Emmett M R, Mick S J, Iyengar S, Wood P L. Clozapine attenuates N-Methyl-D-aspartate receptor complex-mediated responses in vivo: tentative evidence for a functional modulation by a noradrenergic mechanism.  Neuropharmacology. 1991;  30 557-565
  • 72 Roth B L, Tandra S, Burgess L H, Sibley D R, Meltzer H Y. D-4 dopamine receptor binding affinity does not distinguish between typical and atypical antipsychotic drugs.  Psychopharmacology. 1995;  120 365
  • 73 Schotte A, Janssen P F M, Gommeren W, Luyten W H ML, Vangompel P, Lesagne A S, Deloore K, Leysen J E. Risperidone compared with new and reference antipsychotic drugs - in vitro and in vivo receptor binding.  Psychopharmacology. 1996;  124 57-73
  • 74 See R E, Toga A W, Ellison G. Autoradiographic analysis of regional alterations in brain receptors following chronic administration and withdrawal of typical and atypical neuroleptics in rats.  J Neural Transm. 1990;  82 93-109
  • 75 Seeman P, Guan H C, Niznik H B. Endogenous dopamine lowers the dopamine D2 receptor density as measured by (3H) raclopride: implications for positron emission tomography of the human brain.  Synapse. 1989;  3 96-97
  • 76 Seeman P, Tallerico T, Corbett P, Van Tol H H M, Kamboj R K. Role of D2/D4 and serotonin(2A) receptors in antipsychotic and anticataleptic action.  J Psychopharmacol. 1997;  11 15-17
  • 77 Seeman P, Ulpian C. Neuroleptics have identical potencies in human brain limbic and putamen regions.  Eur J Pharmacol. 1983;  94 145-148
  • 78 Seeman P, Van Tol H H M. Dopamine receptor pharmacology.  Trends Pharmacol Sci. 1994;  15 264-270
  • 79 Sleight A J, Boess F G, Bourson A. et al . 5-HT6 and 5-HT7 receptors: molecular biology, functional correlates and possible therapeutic indications.  DN and P. 1997;  10 214-224
  • 80 Small J, Hirsch S, Arvanitis L. et al . Quetiapine in the patient with schizophrenia: a high- and low-dose double-blind comparison with placebo.  Arch Gen Psychiatry. 1997;  54 549-557
  • 81 Snyder S, Greenberg D, Yamamura H. Antischizophrenic drugs and brain cholinergic receptors.  Arch Gen Psychiatry. 1974;  31 58-61
  • 82 Sokoloff P, Giros B, Martres M P, Bouthenet M L, Schwartz I C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics.  Nature. 1990;  347 146-151
  • 83 Tecott L H, Sun L M, Akana S F. et al . Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors.  Nature. 1996;  374 542-546
  • 84 Tran P V, Hamilton S H, Kuntz A, Potvin J H, Anderesen S W, Beasley C, Tollefson G D. Double blind comparison of olanzapine versus risperidone in the treatment of schizophrenia and other psychotic disorders.  J Clin Psychopharmacology. 1997;  17 407-418
  • 85 Van Kammen D R, McEnvoy J P, Targum S. et al . A randomised, controlled dose-ranging trial of sertindole in patients with schizophrenia.  Psychopharmacology (Berl). 1996;  124 168-175
  • 86 Westric B H, Korf J. Effect of centrally acting drugs on regional dopamine metabolism.  Adv Biochem Psychopharmacol. 1978;  19 255-266
  • 87 Williams J, Davies J A. The involvement of 5-hydroxytryptamine in the release of dendritic dopamine from slices of rat substantia nigra.  J Pharm Pharmacol. 1983;  35 734-737

MUDr. Jiří Horáček

Charles University

3rd Faculty of Medicine & Prague Psychiatric Center

Ústavní 91

181 03 Praha 8

Czech Republic

Phone: 042 02 66003370

Fax: 042 02 66003366

Email: horacek@PCP.LF3.CUNI.CZ

    >