Plant Biol (Stuttg) 2000; 2(4): 462-470
DOI: 10.1055/s-2000-5961
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Chemical Composition and Recrystallization of Epicuticular Waxes: Coiled Rodlets and Tubules

I. Meusel 1 , C. Neinhuis 1 , C. Markstädter 2 , W. Barthlott 1
  • 1 Botanisches Institut und Botanischer Garten, Bonn, Germany
  • 2 Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Botanik II, Würzburg, Germany
Further Information

Publication History

May 2, 2000

May 18, 2000

Publication Date:
31 December 2000 (online)

Abstract

Coiled rodlets characterize several non-related taxa within the angiosperms. They often occur together with tubules but sometimes also with platelets or transitional forms between them. The ultrastructure chemistry, and recrystallization of epicuticular waxes of three species were investigated by high-resolution scanning electron microscopy, gas chromatography, and mass spectrometry. Whereas Buxus sempervirens (Buxaceae) and Chrysanthemum segetum (Asteraceae) show coiled rodlets in combination with tubules, Leymus arenarius (Poaceae) exhibits tubules but no coiled rodlets. Chemical analyses reveal that the predominating β-diketones of all species differ completely in their molecular structure. Those of the former two species are mainly substituted in carbon atom positions up to 12. In contrast, the wax of L. arenarius contains only hentriacontane-14,16-dione and 25-hydroxy-hentriacontane-14,16-dione. Standard solutions of the total waxes from B. sempervirens, C. segetum and L. arenarius, the purified β-diketone fraction from C. segetum and hentriacontane-14,16-dione from Secale cereale were taken for recrystallization experiments under different conditions in relation to solvent and crystallization velocity. It was demonstrated that coiled rodlets grew exclusively from total waxes of B. sempervirens and C. segetum, and its β-diketone fraction but never from L. arenarius wax or pure hentriacontane-14,16-dione. The recrystallization experiments pointed out that conditions, such as the chemical environment and physical factors, strongly influence the formation of coiled rodlets and tubules. It is concluded that coiled rodlets are formed by self-assembly in close dependence on the position of β-diketo substitution. The future role of β-diketones in the classification of coiled rodlets within wax crystals is discussed.

References

  • 01 Baker,  E. A.. (1982) Chemistry and morphology of plant epicuticular waxes. The Plant Cuticle. Cutler, D. F., Alvin, K. L., and Price, C. E., eds. London; Academic Press pp. 139-166
  • 02 Barthlott,  W.. (1990) Scanning electron microscopy of the epidermal surface in plants. Scanning electron microscopy in taxonomy and functional morphology. Claugher, D., ed. Oxford; Clarendon Press pp. 69-94
  • 03 Jeffree,  C. E.. (1986) The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. Insects and the Plant Surface. Juniper, B. E. and Southwood, S. R., eds. London; Edward Arnold pp. 23-63
  • 04 Barthlott,  W.,, Neinhuis,  C.,, Cutler,  D.,, Dirsch,  F.,, Meusel,  I.,, Theisen,  I.,, and Wilhelmi,  H.. (1998);  Classification and terminology of plant epicuticular waxes.  Bot. J. Linn. Soc.. 126 137-260
  • 05 Jeffree,  C. E.,, Baker,  E. A.,, and Holloway,  P. J.. (1975);  Ultrastructure and recrystallization of plant epicuticular waxes.  New Phytol.. 75 539-549
  • 06 Jetter,  R., and Riederer,  M.. (1994);  Epicuticular crystals of nonacosan-10-ol: In-vitro reconstitution and factors influencing crystal habits.  Planta. 195 257-270
  • 07 Jetter,  R., and Riederer,  M.. (1995);  In vitro reconstitution of epicuticular wax crystals: Formation of tubular aggregates by long chain secondary alkanediols.  Bot. Acta. 108 111-120
  • 08 Meusel,  I.,, Neinhuis,  C.,, Markstädter,  C.,, and Barthlott,  W.. (1999);  Ultrastructure, chemical composition and recrystallisation of epicuticular waxes: transversely ridged rodlets.  Can. J. Bot.. 77 706-720
  • 09 Basson,  I., and Reynhardt,  E. C.. (1988);  An investigation of the structures and molecular dynamics of natural waxes: I. Beeswax.  Journal of Physics D: Applied Physics. 21 1421-1428
  • 10 Basson,  I., and Reynhardt,  E. C.. (1988);  An investigation of the structures and molecular dynamics of natural waxes: III. Montan wax.  J. Phys. D: Appl. Phys.. 21 1434-1437
  • 11 Kreger,  D. R.. (1948);  An X-ray study of waxy coating from plants.  Recueil des Traveaux botaniques Neerlandais. 42 606-736
  • 12 Bianchi,  G.. (1995) Plant waxes. Waxes: chemistry, molecular biology and functions. Hamilton, R. J. ed. Dundee, Scotland; The Oily Press pp. 177-222
  • 13 Walton,  T. J.. (1990) Waxes, Cutin and Suberin. Lipids, membranes and aspects of photobiology. Harwood, J. L. and Bowyer, J. R., eds. London; Academic Press pp. 105-158
  • 14 Riederer,  M., and Markstädter,  C.. (1996) Cuticular waxes: a critical assessment of current knowledge. Plant Cuticles an Integrated Functional Approach. Kerstiens, G., ed. Oxford; Bios Scientific pp. 189-200
  • 15 Barthlott,  W.,, Neinhuis,  C.,, Jetter,  R.,, Bourauel,  T.,, and Riederer,  M.. (1996);  Waterlily, poppy, or sycamore: on the systematic position of Nelumbo. .  Flora. 191 169-174
  • 16 Holloway,  P. J.,, Jeffree,  C. E.,, and Baker,  E. A.. (1976);  Structural determination of secondary alcohols from plant epicuticular waxes.  Phytochemistry. 15 1768-1770
  • 17 Jetter,  R., and Riederer,  M.. (1996);  Cuticular waxes from the leaves and fruit capsules of eight Papaver species.  Canadian Journal of Botany. 74 419-430
  • 18 Jetter,  R.,, Riederer,  M.,, Seyer,  A.,, and Mioskowski,  C.. (1996);  Homologous long-chain alkanediols from Papaver leaf cuticular waxes.  Phytochemistry. 42 1617-1620
  • 19 Riederer,  M.. (1989) The cuticles of conifers: structure, composition and transport properties. Ecological Studies, Vol. 77. Schulze, E. D., Lange, O. L., and Oren, R., eds. Berlin, Heidelberg; Springer pp. 157-192
  • 20 Lister,  G. R., and Thair,  B. W.. (1981);  In vitro studies on the fine structure of epicuticular leaf wax from Pseudotsuga menziesii. .  Canadian Journal of Botany. 59 640-648
  • 21 Evans,  D.,, Knights,  B. A.,, Math,  V. B.,, and Ritchie,  A. L.. (1975);  β-diketones in Rhododendron waxes.  Phytochemistry. 14 2447-2451
  • 22 Evans,  D.,, Kane,  K. H.,, Knights,  B. A.,, and Math,  V. B.. (1980) Chemical taxonomy of the genus Rhododendron. . Contributions toward a classification of Rhododendron . Luteyn, J. L. and O'Brian, M. E., eds. Lawrence, Kansas; The New York Botanical Garden pp. 187-246
  • 23 Hallam,  N. D.. (1970);  Growth and regeneration of waxes on the leaves of Eucalyptus. .  Planta. 93 257-268
  • 24 Tulloch,  A. P.. (1973);  Composition of leaf surface waxes of Triticum species: variation with age and tissue.  Phytochemistry. 12 2225-2232
  • 25 Tulloch,  A. P.. (1976) Chemistry of waxes of higher plants. Chemistry and biochemistry of natural waxes. Kolattukudy, P. E., ed. Amsterdam, Oxford, New York; Elsevier pp. 236-287
  • 26 Tulloch,  A. P.,, Baum,  B. R.,, and Hoffman,  L. L.. (1980);  A survey of epicuticular waxes among genera of Triticeae. 2. Chemistry.  Canadian Journal of Botany. 58 2602-2615
  • 27 Wettstein-Knowles,  P. v., and Netting,  A. G.. (1976);  Composition of epicuticular waxes on barley spikes.  Carlsberg Research Communications. 41, No. 5 225-235
  • 28 Jeffree,  C. E.,, Baker,  E. A.,, and Holloway,  P. J.. (1976) Origins of the fine structure of plant epicuticular waxes. Microbiology of aerial plant surfaces. Dickinson, C. H. and Preece, T. F., eds. London, New York, San Francisco; Academic Press pp. 119-158
  • 29 Jetter,  R.. (1993) Chemische Zusammensetzung, Struktur und Bildung röhrchenförmiger Wachskristalle auf Pflanzenobeflächen. Kaiserslautern; Dissertation
  • 30 Dierickx,  P. J.. (1973);  New β-diketones from Buxus sempervirens. .  Phytochemistry. 12 1498-1499
  • 31 Ditsch,  F., and Barthlott,  W.. (1997);  Mikromorphologie der Epicuticularwachse und das System der Dilleniidae und Rosidae.  Trop. Subtrop. Pflanzenwelt. 97 1-248
  • 32 Juniper,  B. E.. (1960);  Growth, development, and effect of the environment on the ultra-structure of plant surfaces.  Journal of the Linnean Society (Botany). 56 413-419
  • 33 Wettstein-Knowles,  P. v.. (1974);  Ultrastructure and origin of epicuticular wax tubes.  Journal of Ultrastructure Research. 46 483-498
  • 34 Tulloch,  A. P., and Hoffman,  L. L.. (1976);  Epicuticular wax of Agropyron intermedium. .  Phytochemistry. 15 1145-1151
  • 35 Horn,  D. H. S.,, Kranz,  Z. H.,, and Lamberton,  J. A.. (1964);  The composition of Eucalyptus and other waxes.  Aust. J. Chem.. 17 464-476
  • 36 Mikkelsen,  J. D.. (1979);  Structure and biosynthesis of β-diketones in barley spike epicuticular wax.  Carlsberg Research Commun.. 44 133-147
  • 37 Neinhuis,  C., and Jetter,  R.. (1995);  Ultrastructure and chemistry of epicuticular wax crystals in Polytrichales sporophytes.  J. Bryol.. 18 399-406

W. Barthlott

Botanisches Institut und Botanischer Garten

Meckenheimer Allee 170 53115 Bonn Germany

Email: barthlott@uni-bonn.de http://www.botanik.uni-bonn.de

Section Editor: K. E. Prach

    >