CC BY-NC-ND 4.0 · Journal of Fetal Medicine
DOI: 10.1055/s-0045-1808249
Editorial

NIPT: Routine versus Considered Options

Ashutosh Gupta
1   Department of Foetal Medicine & Medical Genetics, Artemis Hospitals, Gurgaon, Haryana, India
,
Aneja Anjila
2   Department of Obstetrics & Gynecology, Fortis Healthcare, Fortis La Femme, S 549 Greater Kailash, New Delhi, India
,
Bahl Neena
2   Department of Obstetrics & Gynecology, Fortis Healthcare, Fortis La Femme, S 549 Greater Kailash, New Delhi, India
,
Arora Rupam
3   Department of Obstetrics & Gynecology, Cloudnine Hospital, Patparganj, New Delhi, India
,
Nadir Loveleena
2   Department of Obstetrics & Gynecology, Fortis Healthcare, Fortis La Femme, S 549 Greater Kailash, New Delhi, India
› Author Affiliations
Funding None.

Introduction

Congenital diseases, complexes, and syndromes affect 3 to 6% of newborns, with chromosomal abnormalities, teratogenic damage, monogenic disorders, and multigenic diseases being significant contributors to the genetic burden.[1] Specifically, chromosomal disorders account for 6%, teratogenic damage for 7%, monogenic disorders for 8%, and multigenic diseases for 25% of all cases. However, a definitive genetic diagnosis is possible in only about 10% of affected neonates.[2]

Chromosomal abnormalities present a major concern during pregnancy, affecting 1 in every 150 pregnancies.[3] These abnormalities are responsible for half of all early pregnancy losses and are strongly associated with maternal age, regardless of whether the pregnancy involves a singleton or twins.[3] [4] Traditionally, diagnosing these anomalies relied on invasive tests such as amniocentesis and chorionic villus sampling (CVS). While effective, these procedures carry risks of complications, including rare but significant cases of fetal loss.[5]

The field of prenatal diagnostics underwent a revolutionary shift with the discovery of cell-free DNA (cfDNA) in maternal blood in 1997. This breakthrough paved the way for noninvasive prenatal testing (NIPT), which has demonstrated exceptional sensitivity and specificity in detecting fetal aneuploidies. As a result, NIPT has gained rapid acceptance, particularly among high-risk patients. Its remarkable accuracy has significantly reduced the need for invasive diagnostic procedures and the associated risk of fetal loss.

NIPT's transformative impact has earned it the label of a “disruptive innovation” as it continues to reshape prenatal screening and diagnostic practices.[6] However, it is crucial to critically evaluate the claims, promises, and growing excitement surrounding this technology. Such scrutiny is necessary to understand its broader implications, especially given the significant financial investments and strong market demand driving its widespread adoption.[7] [8]



Publication History

Article published online:
30 April 2025

© 2025. Society of Fetal Medicine. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Scharf A. First trimester screening with biochemical markers and ultrasound in relation to non-invasive prenatal testing (NIPT). J Perinat Med 2021; 49 (08) 990-997
  • 2 Hixson L, Goel S, Schuber P. et al. An overview on prenatal screening for chromosomal aberrations. J Lab Autom 2015; 20 (05) 562-573
  • 3 Ethics Committee of the Obstetrics and Gynecology Society of Japan and Committee on Prenatal Genetic Testing Using Maternal Blood. Guidelines for New Prenatal Genetic Testing That Uses Maternal Blood. Tokyo: Japan Society of Obstetrics and Gynecology; 2013
  • 4 Rose NCMK, Anjali J, Dugoff L, Norton ME. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins: Obstetrics Committee on Genetics Society for Maternal-Fetal Medicine. Screening for fetal chromosomal abnormalities. Obstet Gynecol 2020; 136: 48-69
  • 5 Fries N, Le Garrec S, Egloff M. et al. Non-invasive prenatal testing: what are we missing?. Ultrasound Obstet Gynecol 2021; 57 (02) 345-346
  • 6 Warsof SL, Larion S, Abuhamad AZ. Overview of the impact of noninvasive prenatal testing on diagnostic procedures. Prenat Diagn 2015; 35 (10) 972-979
  • 7 Löwy I. Non-invasive prenatal testing: a diagnostic innovation shaped by commercial interests and the regulation conundrum. Soc Sci Med 2022; 304: 113064
  • 8 Holloway K, Miller FA, Simms N. Industry, experts and the role of the “invisible college” in the dissemination of non-invasive prenatal testing in the US. Soc Sci Med 2021; 270: 113635
  • 9 Sifakis S, Koukou Z, Spandidos DA. Cell-free fetal DNA and pregnancy-related complications (review). Mol Med Rep 2015; 11 (04) 2367-2372
  • 10 Chan KC, Zhang J, Hui AB. et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem 2004; 50 (01) 88-92
  • 11 Dharajiya N, Zwiefelhofer T, Guan X, Angkachatchai V, Saldivar JS. Noninvasive prenatal testing using cell-free fetal DNA in maternal plasma. Curr Protoc Hum Genet 2015; 84: 8.15.1-8.15.20
  • 12 Palomaki GE, Kloza EM, Lambert-Messerlian GM. et al. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med 2011; 13 (11) 913-920
  • 13 Ashoor G, Syngelaki A, Wagner M, Birdir C, Nicolaides KH. Chromosome-selective sequencing of maternal plasma cell-free DNA for first-trimester detection of trisomy 21 and trisomy 18. Am J Obstet Gynecol 2012; 206 (04) 322.e1-322.e5
  • 14 Carbone L, Cariati F, Sarno L. et al. Non-invasive prenatal testing: current perspectives and future challenges. Genes (Basel) 2020; 12 (01) 15
  • 15 Raj H, Yelne P. Cell-free fetal deoxyribonucleic acid (cffDNA) analysis as a remarkable method of non-invasive prenatal screening. Cureus 2022; 14 (10) e29965
  • 16 Hestand MS, Bessem M, van Rijn P. et al. Fetal fraction evaluation in non-invasive prenatal screening (NIPS). Eur J Hum Genet 2019; 27 (02) 198-202
  • 17 Mackie FL, Hemming K, Allen S, Morris RK, Kilby MD. The accuracy of cell-free fetal DNA-based non-invasive prenatal testing in singleton pregnancies: a systematic review and bivariate meta-analysis. BJOG 2017; 124 (01) 32-46
  • 18 Dar P, Curnow KJ, Gross SJ. et al. Clinical experience and follow-up with large scale single-nucleotide polymorphism-based noninvasive prenatal aneuploidy testing. Am J Obstet Gynecol 2014; 211 (05) 527.e1-527.e17
  • 19 Palomaki GE, Deciu C, Kloza EM. et al. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study. Genet Med 2012; 14 (03) 296-305
  • 20 Samura O, Sekizawa A, Suzumori N. et al. Current status of non-invasive prenatal testing in Japan. J Obstet Gynaecol Res 2017; 43 (08) 1245-1255
  • 21 Suzumori N, Ebara T, Yamada T. et al; Japan NIPT Consortium. Fetal cell-free DNA fraction in maternal plasma is affected by fetal trisomy. J Hum Genet 2016; 61 (07) 647-652
  • 22 Hui L, Bethune M, Weeks A, Kelley J, Hayes L. Repeated failed non-invasive prenatal testing owing to low cell-free fetal DNA fraction and increased variance in a woman with severe autoimmune disease. Ultrasound Obstet Gynecol 2014; 44 (02) 242-243
  • 23 Hui CY, Tan WC, Tan EL, Tan LK. Repeated failed non-invasive prenatal testing in a woman with immune thrombocytopenia and antiphospholipid syndrome: lessons learnt. BMJ Case Rep 2016; 2016: bcr2016216593
  • 24 Chan RW, Jiang P, Peng X. et al. Plasma DNA aberrations in systemic lupus erythematosus revealed by genomic and methylomic sequencing. Proc Natl Acad Sci U S A 2014; 111 (49) E5302-E5311
  • 25 Grömminger S, Erkan S, Schöck U. et al. The influence of low molecular weight heparin medication on plasma DNA in pregnant women. Prenat Diagn 2015; 35 (11) 1155-1157
  • 26 Grace MR, Hardisty E, Dotters-Katz SK, Vora NL, Kuller JA. Cell-free DNA screening: complexities and challenges of clinical implementation. Obstet Gynecol Surv 2016; 71 (08) 477-487
  • 27 Hartwig TS, Ambye L, Sørensen S, Jørgensen FS. Discordant non-invasive prenatal testing (NIPT): a systematic review. Prenat Diagn 2017; 37 (06) 527-539
  • 28 Futch T, Spinosa J, Bhatt S, de Feo E, Rava RP, Sehnert AJ. Initial clinical laboratory experience in noninvasive prenatal testing for fetal aneuploidy from maternal plasma DNA samples. Prenat Diagn 2013; 33 (06) 569-574
  • 29 Malvestiti F, Agrati C, Grimi B. et al. Interpreting mosaicism in chorionic villi: results of a monocentric series of 1001 mosaics in chorionic villi with follow-up amniocentesis. Prenat Diagn 2015; 35 (11) 1117-1127
  • 30 Kalousek DK, Vekemans M. Confined placental mosaicism. J Med Genet 1996; 33 (07) 529-533
  • 31 Schreck RR, Falik-Borenstein Z, Hirata G. Chromosomal mosaicism in chorionic villus sampling. Clin Perinatol 1990; 17 (04) 867-888
  • 32 Kalousek DK, Howard-Peebles PN, Olson SB. et al. Confirmation of CVS mosaicism in term placentae and high frequency of intrauterine growth retardation association with confined placental mosaicism. Prenat Diagn 1991; 11 (10) 743-750
  • 33 Grati FR, Bajaj K, Malvestiti F. et al. The type of feto-placental aneuploidy detected by cfDNA testing may influence the choice of confirmatory diagnostic procedure. Prenat Diagn 2015; 35 (10) 994-998
  • 34 Curnow KJ, Wilkins-Haug L, Ryan A. et al. Detection of triploid, molar, and vanishing twin pregnancies by a single-nucleotide polymorphism-based noninvasive prenatal test. Am J Obstet Gynecol 2015; 212 (01) 79.e1-79.e9
  • 35 Wang Y, Chen Y, Tian F. et al. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing. Clin Chem 2014; 60 (01) 251-259
  • 36 Bianchi DW, Parsa S, Bhatt S. et al. Fetal sex chromosome testing by maternal plasma DNA sequencing: clinical laboratory experience and biology. Obstet Gynecol 2015; 125 (02) 375-382
  • 37 Gregg AR, Skotko BG, Benkendorf JL. et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet Med 2016; 18 (10) 1056-1065
  • 38 Dharajiya NG, Grosu DS, Farkas DH. et al. Incidental detection of maternal neoplasia in noninvasive prenatal testing. Clin Chem 2018; 64 (02) 329-335
  • 39 Suzumori N, Sekizawa A, Takeda E. et al. Classification of factors involved in nonreportable results of noninvasive prenatal testing (NIPT) and prediction of success rate of second NIPT. Prenat Diagn 2019; 39 (02) 100-106
  • 40 Bianchi DW, Chiu RWK. Sequencing of circulating cell-free DNA during pregnancy. N Engl J Med 2018; 379 (05) 464-473
  • 41 Dharajiya NG, Namba A, Horiuchi I. et al. Uterine leiomyoma confounding a noninvasive prenatal test result. Prenat Diagn 2015; 35 (10) 990-993
  • 42 Kalousek DK, Barrett IJ, McGillivray BC. Placental mosaicism and intrauterine survival of trisomies 13 and 18. Am J Hum Genet 1989; 44 (03) 338-343
  • 43 Boyle B, Morris JK, McConkey R. et al. Prevalence and risk of Down syndrome in monozygotic and dizygotic multiple pregnancies in Europe: implications for prenatal screening. BJOG 2014; 121 (07) 809-819 , discussion 820
  • 44 Lannoo L, van Straaten K, Breckpot J. et al. Rare autosomal trisomies detected by non-invasive prenatal testing: an overview of current knowledge. Eur J Hum Genet 2022; 30 (12) 1323-1330
  • 45 Zhang M, Tang J, Li J. et al. Value of noninvasive prenatal testing in the detection of rare fetal autosomal abnormalities. Eur J Obstet Gynecol Reprod Biol 2023; 284: 5-11
  • 46 Lin TY, Hsieh TT, Cheng PJ. et al. Taiwanese clinical experience with noninvasive prenatal testing for DiGeorge syndrome. Fetal Diagn Ther 2021; 48 (09) 672-677
  • 47 Kozlowski P, Burkhardt T, Gembruch U. et al. DEGUM, ÖGUM, SGUM and FMF Germany recommendations for the implementation of first-trimester screening, detailed ultrasound, cell-free DNA screening and diagnostic procedures. Ultraschall Med 2019; 40 (02) 176-193
  • 48 Zhang B, Lu BY, Yu B. et al. Noninvasive prenatal screening for fetal common sex chromosome aneuploidies from maternal blood. J Int Med Res 2017; 45 (02) 621-630
  • 49 Coorens THH, Oliver TRW, Sanghvi R. et al. Inherent mosaicism and extensive mutation of human placentas. Nature 2021; 592 (7852) 80-85
  • 50 Benn P. Non-invasive prenatal testing using cell free DNA in maternal plasma: recent developments and future prospects. J Clin Med 2014; 3 (02) 537-565
  • 51 Martin JA, Hamilton BE, Osterman MJK, Driscoll AK. Births: final data for 2018. Natl Vital Stat Rep 2019; 68 (13) 1-47
  • 52 Committee on Practice Bulletins—Obstetrics, Society for Maternal–Fetal Medicine. Practice bulletin no. 169: multifetal gestations: twin, triplet, and higher-order multifetal pregnancies. Obstet Gynecol 2016; 128 (04) e131-e146
  • 53 Grantz KL, Kawakita T, Lu YL, Newman R, Berghella V, Caughey A. SMFM Research Committee. SMFM Special Statement: state of the science on multifetal gestations: unique considerations and importance. Am J Obstet Gynecol 2019; 221 (02) B2-B12
  • 54 Sparks TN, Norton ME, Flessel M, Goldman S, Currier RJ. Observed rate of Down syndrome in twin pregnancies. Obstet Gynecol 2016; 128 (05) 1127-1133
  • 55 Bergstrand E, Borregaard Miltoft C, Tabor A. Performance of first trimester screening for trisomy 21 in twin pregnancies. Prenat Diagn 2021; 41 (02) 210-217
  • 56 Cuckle H, Benn P. Maternal serum screening for chromosomal abnormalities and neural tube defects. In: Milunsky A, Milunsky JM. eds Genetic Disorders and the Fetus: Diagnosis, Prevention and Treatment. 7th ed.. Chichester, UK: Wiley; 2016
  • 57 Cavoretto P, Giorgione V, Cipriani S. et al. Nuchal translucency measurement, free β-hCG and PAPP-A concentrations in IVF/ICSI pregnancies: systematic review and meta-analysis. Prenat Diagn 2017; 37 (06) 540-555
  • 58 Di Mascio D, Khalil A, Rizzo G. et al. Risk of fetal loss following amniocentesis or chorionic villus sampling in twin pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2020; 56 (05) 647-655
  • 59 Vink J, Fuchs K, D'Alton ME. Amniocentesis in twin pregnancies: a systematic review of the literature. Prenat Diagn 2012; 32 (05) 409-416
  • 60 Agarwal K, Alfirevic Z. Pregnancy loss after chorionic villus sampling and genetic amniocentesis in twin pregnancies: a systematic review. Ultrasound Obstet Gynecol 2012; 40 (02) 128-134
  • 61 Screening for fetal chromosomal abnormalities: ACOG practice bulletin summary, number 226. Obstet Gynecol 2020; 136 (04) 859-867
  • 62 Palomaki GE, Chiu RWK, Pertile MD. et al. International Society for Prenatal Diagnosis Position Statement: cell free (cf)DNA screening for Down syndrome in multiple pregnancies. Prenat Diagn 2021; 41 (10) 1222-1232
  • 63 Canick JA, Kloza EM, Lambert-Messerlian GM. et al. DNA sequencing of maternal plasma to identify Down syndrome and other trisomies in multiple gestations. Prenat Diagn 2012; 32 (08) 730-734
  • 64 Struble CA, Syngelaki A, Oliphant A, Song K, Nicolaides KH. Fetal fraction estimate in twin pregnancies using directed cell-free DNA analysis. Fetal Diagn Ther 2014; 35 (03) 199-203
  • 65 Sarno L, Revello R, Hanson E, Akolekar R, Nicolaides KH. Prospective first-trimester screening for trisomies by cell-free DNA testing of maternal blood in twin pregnancy. Ultrasound Obstet Gynecol 2016; 47 (06) 705-711
  • 66 Hedriana H, Martin K, Saltzman D, Billings P, Demko Z, Benn P. Cell-free DNA fetal fraction in twin gestations in single-nucleotide polymorphism-based noninvasive prenatal screening. Prenat Diagn 2020; 40 (02) 179-184
  • 67 Norwitz ER, McNeill G, Kalyan A. et al. Validation of a single-nucleotide polymorphism-based non-invasive prenatal test in twin gestations: determination of zygosity, individual fetal sex, and fetal aneuploidy. J Clin Med 2019; 8 (07) 937
  • 68 Gil MM, Galeva S, Jani J. et al. Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: update of The Fetal Medicine Foundation results and meta-analysis. Ultrasound Obstet Gynecol 2019; 53 (06) 734-742
  • 69 Russell LM, Strike P, Browne CE, Jacobs PA. X chromosome loss and ageing. Cytogenet Genome Res 2007; 116 (03) 181-185
  • 70 Ashoor G, Syngelaki A, Poon LC, Rezende JC, Nicolaides KH. Fetal fraction in maternal plasma cell-free DNA at 11-13 weeks' gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol 2013; 41 (01) 26-32
  • 71 Balaguer N, Mateu-Brull E, Serra V, Simon C, Milan M. Should vanishing twin pregnancies be systematically excluded from cell-free fetal DNA testing?. Prenat Diagn 2021; 41 (10) 1241-1248
  • 72 Benn P, Grati FR. Aneuploidy in first trimester chorionic villi and spontaneous abortions: windows into the origin and fate of aneuploidy through embryonic and fetal development. Prenat Diagn 2021; 41 (05) 519-524
  • 73 Chitty LS, Wright D, Hill M. et al. Uptake, outcomes, and costs of implementing non-invasive prenatal testing for Down's syndrome into NHS maternity care: prospective cohort study in eight diverse maternity units. BMJ 2016; 354: i3426
  • 74 Allyse M, Minear MA, Berson E. et al. Non-invasive prenatal testing: a review of international implementation and challenges. Int J Womens Health 2015; 7: 113-126
  • 75 Hsiao CH, Chen CH, Cheng PJ, Shaw SW, Chu WC, Chen RC. The impact of prenatal screening tests on prenatal diagnosis in Taiwan from 2006 to 2019: a regional cohort study. BMC Pregnancy Childbirth 2022; 22 (01) 23
  • 76 Hirose T, Shirato N, Izumi M, Miyagami K, Sekizawa A. Postpartum questionnaire survey of women who tested negative in a non-invasive prenatal testing: examining negative emotions towards the test. J Hum Genet 2021; 66 (06) 579-584
  • 77 Lo TK, Chan KY, Kan AS. et al. Decision outcomes in women offered noninvasive prenatal test (NIPT) for positive Down screening results. J Matern Fetal Neonatal Med 2019; 32 (02) 348-350
  • 78 Liehr T, Lauten A, Schneider U, Schleussner E, Weise A. Noninvasive prenatal testing (NIPT): when is it advantageous to apply?. Biomed Hub 2017; 2 (01) 1-11
  • 79 Taylor-Phillips S, Freeman K, Geppert J. et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open 2016; 6 (01) e010002
  • 80 Stosic M, Levy B, Wapner R. The use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol Clin North Am 2018; 45 (01) 55-68
  • 81 Cheng SSW, Chan KYK, Leung KKP. et al. Experience of chromosomal microarray applied in prenatal and postnatal settings in Hong Kong. Am J Med Genet C Semin Med Genet 2019; 181 (02) 196-207
  • 82 Salomon LJ, Sotiriadis A, Wulff CB, Odibo A, Akolekar R. Risk of miscarriage following amniocentesis or chorionic villus sampling: systematic review of literature and updated meta-analysis. Ultrasound Obstet Gynecol 2019; 54 (04) 442-451