CC BY 4.0 · Brazilian Journal of Oncology 2017; 13(43): e-1792181
DOI: 10.1055/s-0044-1792181
Revisão

MicroRNAs - Biogênese, funções e características moleculares do glioblastoma

MicroRNAs - Biogenesis, functions and predictive biomarkers in glioblastoma
Felipe Amstalden Trevisan
1   Departmento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, SP, Brasil
,
Harley Francisco de Oliveira
1   Departmento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, SP, Brasil
,
Daniela Pretti da Cunha Tirapelli
2   Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, SP, Brasil
,
Carlos Gilberto Carlotti Junior
2   Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, SP, Brasil
› Institutsangaben

RESUMO

A identificação de biomarcadores prognósticos e preditivos poderá personalizar a terapia antineoplásica com vistas a uma maior sobrevida, redução da recidiva e melhor qualidade de vida aos pacientes com diagnóstico de glioblastoma. Temos atualmente diversos candidatos a potenciais biomarcadores que são estudados em laboratórios em fases pré-clíni-cas, sendo que sua utilização na clínica ainda carece de melhor elucidação do real beneficio como alvos moleculares. Os microRNAs são potenciais biomarcadores, além de outras características moleculares, da metilação e da expressão genômica responsáveis pelo desenvolvimiento e propriedades do glioblastoma. A assinatura gènica vem auxiliando na es-tratificação em subgrupos, em alterações nas classificações patológicas além do grande potencial terapêutico.

ABSTRACT

The identification of prognostic and predictive biomarkers may personalize antineoplastic therapy to intending to greater survival, reduction of relapse and quality of life for patients diagnosed with glioblastoma. We currently have several applicants for potential biomarkers studied in laboratories in preclinical phases, and their use in the clinical still lacks better elucidation of the real benefit as molecular targets. MicroRNAs are potential biomarkers, in addition to other molecular characteristics, of methylation and genomic expression responsible for the development and feature of glioblastoma. Gene signature has been helping in stratification into subgroups, in alterations in pathological classifications, and with great therapeutic potential.



Publikationsverlauf

Eingereicht: 15. Februar 2017

Angenommen: 27. März 2017

Artikel online veröffentlicht:
07. März 2025

© 2017. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

Bibliographical Record
Felipe Amstalden Trevisan, Harley Francisco de Oliveira, Daniela Pretti da Cunha Tirapelli, Carlos Gilberto Carlotti Junior. MicroRNAs - Biogênese, funções e características moleculares do glioblastoma. Brazilian Journal of Oncology 2017; 13: e-1792181.
DOI: 10.1055/s-0044-1792181
 
  • REFERÊNCIAS

  • 1 Lynch HT, Krush AJ, Harlan WL, Sharp EA. Association of soft tissue sarcoma, leukemia, and brain tumors in families affected with breast cancer. Am Surg 1973; 39 (04) 199-206
  • 2 Black PM. Brain tumors. Part 1 N Engl J Med 1991; 324 (21) 1471-6 Review May 23
  • 3 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66 (01) 7-30
  • 4 Kleihues P, Ohgaki H. Primary and secondary glioblasto-mas: from concept to clinical diagnosis. Neuro Oncol 1999; 1 (01) 44-51
  • 5 Schoenberg BS. Multiple primary neoplasms and the nervous system. Cancer 1977; 40 4 Suppl 1961-7
  • 6 Prados MD, Levin V. Biology and treatment of malignant glioma. Semin Oncol 2000; 27 3 Suppl 6 1-10
  • 7 Li FP, Fraumeni JF. Prospective study of a family cancer syndrome. Jama 1982; 247 (19) 2692-4
  • 8 Todd DW, Christoferson LA, Leech RW, Rudolf L. A family affected with intestinal polyposis and gliomas. Ann Neurol 1981; 10 (04) 390-2
  • 9 Shaw EG, Scheithauer BW, O’Fallen JR. Supratentorial glio-mas: A comparative study by grade and histologic type. J Neurooncol 1997; 31 (03) 273-8
  • 10 Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Soren-sen AG, Galanis E. et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro--oncology working group. J Clin Oncol 2010; 28 (11) 1963-72
  • 11 Walker MD, Green SB, Byar DP, Alexander Jr E, Batzdorf U, Brooks WH. et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 1980; 303 (23) 1323-9
  • 12 Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10 (05) 459-66
  • 13 Noda S, El-Jawahri A, Patel D, Lautenschlaeger T, Siedow M, Chakravarti A. Molecular Advances of brain tumors in radiation oncology. Semin Radiat Oncol 2009; 19 (03) 171-8
  • 14 Avgeropoulos NG, Batchelor TT. New treatment strategies for malignant gliomas. Oncologist 1999; 4 (03) 209-24
  • 15 Von Deimling A, Fimmers R, Schmidt MC, Bender B, Fassbender F, Nagel J. Comprehensive allelotype and genetic analysis of 466 human nervous system tumors. J Neuropa-thol Exp Neurol 2000; 59 (06) 544-58
  • 16 Bush NA, Butowski N. The effect of molecular diagnostics on the treatment of glioma. Curr Oncol Rep 2017; 19 (04) 26
  • 17 Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17 (01) 98-110
  • 18 Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010; 60 (03) 166-93
  • 19 Murphy AC, Weyhenmeyer B, Noonan J, Kilbride SM, Schi-mansky S, Loh KP. et al. Modulation of Mcl-1 sensitizes glioblastoma to TRAIL-induced apoptosis. Apoptosis 2014; 19 (04) 629-42
  • 20 Tabatabai G, Stupp R, Van Den Bent MJ, Hegi ME, Tonn JC, Wick W. et al. Molecular diagnostics of gliomas: The clinical perspective. Acta Neuropathol 2010; 120 (05) 585-92
  • 21 Cahill KE, Morshed RA, Yamini B. Nuclear factor-κB in glioblastoma: Insights into regulators and targeted therapy. Neuro Oncol 2016; 18 (03) 329-39
  • 22 Jung TY, Jung S, Moon KS, Kim IY, Kang SS, Kim YH. et al. Changes of the O6-methylguanine-DNA methyltransfe-rase promoter methylation and MGMT protein expression after adjuvant treatment in glioblastoma. Oncol Rep 2010; 23 (05) 1269-76
  • 23 Kreth S, Thon N, Eigenbrod S, Lutz J, Ledderose C, Egensperger R. et al. O6-methylguanine-DNA methyltransferase (MGMT) mRNA expression predicts outcome in malignant glioma independent of MGMT promoter methylation. PLoS One 2011; 6 (02) e17156
  • 24 Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M. et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-muta-ted glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: Implications for classification of gliomas. Acta Neuropathol 2010; 120 (06) 707-18
  • 25 Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W. et al. IDH1 IDH2 mutations in gliomas. N Engl J Med 2009; 360 (08) 765-773
  • 26 Hall EE. Radiobiology for the radiologist. Maryland: Harper and How; 1978. [Comment by Hendry JH. Br J Cancer. 1979; 39(4): 490]
  • 27 Fay M, Head R, Martin J. Where is the radiobiology and pharmacology research to improve outcomes in glioblastoma?. J Neurooncol 2015; 124 (01) 1-3
  • 28 Chaudhry MA, Sachdeva H, Omaruddin RA. Radiation-Induced Micro-RNA Modulation in Glioblastoma Cells Differing in DNA-Repair Pathways. 2010; 29 (09) 553-61
  • 29 Li B, Yuan M, Kim IA, Chang CM, Bernhard EJ, Shu HK. Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 2004; 23 (26) 4594-602
  • 30 Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol 2011; 223 (02) 102-15
  • 31 Chen CZ, Lodish HF. MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol 2005; 17 2 SPEC. ISS. 155-65
  • 32 Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravi-chandran LV. et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279 (50) 52361-5
  • 33 Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell 2009; 136 (02) 215-33
  • 34 Volinia S, Calin G a, Liu CG, Ambs S, Cimmino A, Petrocca F. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Pnas 2006; 103 (07) 2257-61
  • 35 Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an an-tiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65 (14) 6029-33
  • 36 Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkin-son M. et al. microRNA-7 inhibits the epidermal growth factor receptor and the akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68 (10) 3566-72
  • 37 Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G. et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by MicroRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 2008; 68 (22) 9125-30
  • 38 Zhang C, Han L, Zhang A, Yang W, Zhou X, Pu P. et al. Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells. Int J Oncol 2010; 36 (06) 1503-12
  • 39 Nikiforova MN, Hamilton RL. Molecular diagnostics of gliomas. Arch Pathol Lab Med 2011; 135 (05) 558-68
  • 40 Dubbink HJ, Atmodimedjo PN, Kros JM, Kros JM, French PJ, Sanson M. et al. Molecular classification of anaplastic oligodendroglioma using next-generation sequencing: A report of the prospective randomized EORTC Brain Tumor Group 26951 phase III trial. Neuro Oncol 2016; 18 (03) 388-400
  • 41 Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella--Branger D, Cavenee WK. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131 (06) 803-20
  • 42 Karsy M, Guan J, Cohen AL, Jensen RL, Colman H. New Molecular Considerations for Glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Curr Neurol Neurosci Rep 2017; 17 (02) 19
  • 43 Labussière M, Di Stefano AL, Gleize V, Boisselier B, Giry M, Mangesius S. et al. TERT promoter mutations in gliomas, genetic associations and clinico-pathological correlations. Br J Cancer 2014; 111 (10) 2024-2032