Semin Thromb Hemost
DOI: 10.1055/s-0044-1782660
Review Article

The Role of Myeloid Cells in Thromboinflammatory Disease

David Noone
1   Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
2   National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
,
Roger J.S. Preston
1   Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
2   National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
,
Aisling M. Rehill
1   Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
2   National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
› Author Affiliations
Funding Grant support for D.N., A.M.R., and R.J.S.P. is provided by Science Foundation Ireland (21/FFP-A/8859). R.J.S.P. is supported by funding from the National Children's Research Centre (C/18/3) and Health Research Board Ireland (ILP-POR-2022-060).

Abstract

Inflammation contributes to the development of thrombosis, but the mechanistic basis for this association remains poorly understood. Innate immune responses and coagulation pathways are activated in parallel following infection or injury, and represent an important host defense mechanism to limit pathogen spread in the bloodstream. However, dysregulated proinflammatory activity is implicated in the progression of venous thromboembolism and arterial thrombosis. In this review, we focus on the role of myeloid cells in propagating thromboinflammation in acute inflammatory conditions, such as sepsis and coronavirus disease 2019 (COVID-19), and chronic inflammatory conditions, such as obesity, atherosclerosis, and inflammatory bowel disease. Myeloid cells are considered key drivers of thromboinflammation via upregulated tissue factor activity, formation of neutrophil extracellular traps (NETs), contact pathway activation, and aberrant coagulation factor–mediated protease-activated receptor (PAR) signaling. We discuss how strategies to target the intersection between myeloid cell–mediated inflammation and activation of blood coagulation represent an exciting new approach to combat immunothrombosis. Specifically, repurposed anti-inflammatory drugs, immunometabolic regulators, and NETosis inhibitors present opportunities that have the potential to dampen immunothrombotic activity without interfering with hemostasis. Such therapies could have far-reaching benefits for patient care across many thromboinflammatory conditions.

Authors' Contributions

All the authors were involved in writing and reviewing the article.




Publication History

Article published online:
28 March 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol 2021; 18 (09) 666-682
  • 2 Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 2015; 33: 257-290
  • 3 Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140 (06) 805-820
  • 4 Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov 2020; 6 (01) 36
  • 5 Vorobjeva NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc) 2020; 85 (10) 1178-1190
  • 6 Granger V, Faille D, Marani V. et al. Human blood monocytes are able to form extracellular traps. J Leukoc Biol 2017; 102 (03) 775-781
  • 7 Chow OA, von Köckritz-Blickwede M, Bright AT. et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 2010; 8 (05) 445-454
  • 8 Bochner BS. Systemic activation of basophils and eosinophils: markers and consequences. J Allergy Clin Immunol 2000; 106 (5, Suppl): S292-S302
  • 9 Rescigno M, Granucci F, Ricciardi-Castagnoli P. Dendritic cells at the end of the millennium. Immunol Cell Biol 1999; 77 (05) 404-410
  • 10 Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020; 20 (06) 363-374
  • 11 Nedeva C, Menassa J, Puthalakath H. Sepsis: inflammation is a necessary evil. Front Cell Dev Biol 2019; 7 (108) 108
  • 12 Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 2011; 29: 415-445
  • 13 Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol 2009; 27: 165-197
  • 14 Portier I, Campbell RA. Role of platelets in detection and regulation of infection. ATVB 2021; 41 (01) 70-78
  • 15 Freedman JE, Loscalzo J. Platelet-monocyte aggregates: bridging thrombosis and inflammation. Circulation 2002; 105 (18) 2130-2132
  • 16 Zucoloto AZ, Jenne CN. Platelet-neutrophil interplay: insights into neutrophil extracellular trap (NET)-driven coagulation in infection. Front Cardiovasc Med 2019; 6: 85
  • 17 Chen VM, Hogg PJ. Encryption and decryption of tissue factor. J Thromb Haemost 2013; 11 (Suppl. 01) 277-284
  • 18 Rao LV, Pendurthi UR. Regulation of tissue factor coagulant activity on cell surfaces. J Thromb Haemost 2012; 10 (11) 2242-2253
  • 19 Rao LV, Kothari H, Pendurthi UR. Tissue factor: mechanisms of decryption. Front Biosci (Elite Ed) 2012; 4 (04) 1513-1527
  • 20 Wang J, Pendurthi UR, Rao LVM. Sphingomyelin encrypts tissue factor: ATP-induced activation of A-SMase leads to tissue factor decryption and microvesicle shedding. Blood Adv 2017; 1 (13) 849-862
  • 21 Wu C, Lu W, Zhang Y. et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity 2019; 50 (06) 1401-1411.e4
  • 22 Shahneh F, Christian Probst H, Wiesmann SC. et al. Inflammatory monocyte counts determine venous blood clot formation and resolution. Arterioscler Thromb Vasc Biol 2022; 42 (02) 145-155
  • 23 von Brühl ML, Stark K, Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 24 Wohlwend A, Belin D, Vassalli JD. Plasminogen activator-specific inhibitors in mouse macrophages: in vivo and in vitro modulation of their synthesis and secretion. J Immunol 1987; 139 (04) 1278-1284
  • 25 Chapman HA, Yang XL, Sailor LZ, Sugarbaker DJ. Developmental expression of plasminogen activator inhibitor type 1 by human alveolar macrophages. Possible role in lung injury. J Immunol 1990; 145 (10) 3398-3405
  • 26 Gupta KK, Xu Z, Castellino FJ, Ploplis VA. Plasminogen activator inhibitor-1 stimulates macrophage activation through toll-like receptor-4. Biochem Biophys Res Commun 2016; 477 (03) 503-508
  • 27 Ren W, Wang Z, Hua F, Zhu L. Plasminogen activator inhibitor-1 regulates LPS-induced TLR4/MD-2 pathway activation and inflammation in alveolar macrophages. Inflammation 2015; 38 (01) 384-393
  • 28 Heissig B, Salama Y, Takahashi S, Osada T, Hattori K. The multifaceted role of plasminogen in inflammation. Cell Signal 2020; 75: 109761
  • 29 Massberg S, Grahl L, von Bruehl ML. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-8
  • 30 Campos J, Ponomaryov T, De Prendergast A. et al. Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis in mice. Blood Adv 2021; 5 (09) 2319-2324
  • 31 Liberale L, Holy EW, Akhmedov A. et al. Interleukin-1β mediates arterial thrombus formation via NET-associated tissue factor. J Clin Med 2019; 8 (12) 2072
  • 32 Liu D, Yang P, Gao M. et al. NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound. Clin Sci (Lond) 2019; 133 (04) 565-582
  • 33 Uderhardt S, Ackermann JA, Fillep T. et al. Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. J Exp Med 2017; 214 (07) 2121-2138
  • 34 Marx C, Novotny J, Salbeck D. et al. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood 2019; 134 (21) 1859-1872
  • 35 Moosbauer C, Morgenstern E, Cuvelier SL. et al. Eosinophils are a major intravascular location for tissue factor storage and exposure. Blood 2007; 109 (03) 995-1002
  • 36 Cugno M, Marzano AV, Lorini M, Carbonelli V, Tedeschi A. Enhanced tissue factor expression by blood eosinophils from patients with hypereosinophilia: a possible link with thrombosis. PLoS One 2014; 9 (11) e111862
  • 37 Han X, Nieman MT, Kerlin BA. Protease-activated receptors: an illustrated review. Res Pract Thromb Haemost 2020; 5 (01) 17-26
  • 38 Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J 2019; 17 (01) 4
  • 39 Colognato R, Slupsky JR, Jendrach M, Burysek L, Syrovets T, Simmet T. Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood 2003; 102 (07) 2645-2652
  • 40 Nelken NA, Soifer SJ, O'Keefe J, Vu TK, Charo IF, Coughlin SR. Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest 1992; 90 (04) 1614-1621
  • 41 Friebel J, Moritz E, Witkowski M. et al. Pleiotropic effects of the protease-activated receptor 1 (PAR1) inhibitor, vorapaxar, on atherosclerosis and vascular inflammation. Cells 2021; 10 (12) 3517
  • 42 Kaplanski G, Marin V, Fabrigoule M. et al. Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106). Blood 1998; 92 (04) 1259-1267
  • 43 Rabiet MJ, Plantier JL, Rival Y, Genoux Y, Lampugnani MG, Dejana E. Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vasc Biol 1996; 16 (03) 488-496
  • 44 Kása A, Csortos C, Verin AD. Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury. Tissue Barriers 2015; 3 (1–2): e974448
  • 45 Szaba FM, Smiley ST. Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 2002; 99 (03) 1053-1059
  • 46 Wilkinson H, Leonard H, Chen D. et al. PAR-1 signaling on macrophages is required for effective in vivo delayed-type hypersensitivity responses. iScience 2021; 24 (01) 101981
  • 47 Burzynski LC, Humphry M, Pyrillou K. et al. The coagulation and immune systems are directly linked through the activation of interleukin-1α by thrombin. Immunity 2019; 50 (04) 1033-1042.e6
  • 48 Burzynski LC, Morales-Maldonado A, Rodgers A. et al. Thrombin-activated interleukin-1α drives atherogenesis, but also promotes vascular smooth muscle cell proliferation and collagen production. Cardiovasc Res 2023; 119 (12) 2179-2189
  • 49 Scaldaferri F, Sans M, Vetrano S. et al. Crucial role of the protein C pathway in governing microvascular inflammation in inflammatory bowel disease. J Clin Invest 2007; 117 (07) 1951-1960
  • 50 Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW. Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 2001; 276 (14) 11199-11203
  • 51 Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 2005; 105 (08) 3178-3184
  • 52 Cheng T, Liu D, Griffin JH. et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 2003; 9 (03) 338-342
  • 53 Toltl LJ, Beaudin S, Liaw PC. Canadian Critical Care Translational Biology Group. Activated protein C up-regulates IL-10 and inhibits tissue factor in blood monocytes. J Immunol 2008; 181 (03) 2165-2173
  • 54 White B, Schmidt M, Murphy C. et al. Activated protein C inhibits lipopolysaccharide-induced nuclear translocation of nuclear factor kappaB (NF-kappaB) and tumour necrosis factor alpha (TNF-alpha) production in the THP-1 monocytic cell line. Br J Haematol 2000; 110 (01) 130-134
  • 55 Elphick GF, Sarangi PP, Hyun YM. et al. Recombinant human activated protein C inhibits integrin-mediated neutrophil migration. Blood 2009; 113 (17) 4078-4085
  • 56 Healy LD, Puy C, Fernández JA. et al. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem 2017; 292 (21) 8616-8629
  • 57 Xu J, Zhang X, Pelayo R. et al. Extracellular histones are major mediators of death in sepsis. Nat Med 2009; 15 (11) 1318-1321
  • 58 Jiang Y, Lu L. New insight into the agonism of protease-activated receptors as an immunotherapeutic strategy. J Biol Chem 2023; 300 (02) 105614
  • 59 Ramachandran R, Mihara K, Chung H. et al. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J Biol Chem 2011; 286 (28) 24638-24648
  • 60 Zhao P, Lieu T, Barlow N. et al. Neutrophil elastase activates protease-activated receptor-2 (PAR2) and transient receptor potential vanilloid 4 (TRPV4) to cause inflammation and pain. J Biol Chem 2015; 290 (22) 13875-13887
  • 61 Richards J, Tang S, Gunsch G. et al. Mast cell/proteinase activated receptor 2 (PAR2) mediated interactions in the pathogenesis of discogenic back pain. Front Cell Neurosci 2019; 13: 294
  • 62 Lin H, Trejo J. Transactivation of the PAR1-PAR2 heterodimer by thrombin elicits β-arrestin-mediated endosomal signaling. J Biol Chem 2013; 288 (16) 11203-11215
  • 63 Madhusudhan T, Wang H, Straub BK. et al. Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes. Blood 2012; 119 (03) 874-883
  • 64 Healy LD, Fernández JA, Mosnier LO, Griffin JH. Activated protein C and PAR1-derived and PAR3-derived peptides are anti-inflammatory by suppressing macrophage NLRP3 inflammasomes. J Thromb Haemost 2021; 19 (01) 269-280
  • 65 Siegbahn A, Johnell M, Nordin A, Åberg M, Velling T. TF/FVIIa transactivate PDGFRβ to regulate PDGF-BB–induced chemotaxis in different cell types. Arterioscler Thromb Vasc Biol 2008; 28 (01) 135-141
  • 66 Fleischer MI, Röhrig N, Raker VK. et al. Protease- and cell type-specific activation of protease-activated receptor 2 in cutaneous inflammation. J Thromb Haemost 2022; 20 (12) 2823-2836
  • 67 White MJV, Chinea LE, Pilling D, Gomer RH. Protease activated-receptor 2 is necessary for neutrophil chemorepulsion induced by trypsin, tryptase, or dipeptidyl peptidase IV. J Leukoc Biol 2018; 103 (01) 119-128
  • 68 Silva IS, Almeida AD, Lima Filho ACM. et al. Platelet-activating factor and protease-activated receptor 2 cooperate to promote neutrophil recruitment and lung inflammation through nuclear factor-kappa B transactivation. Sci Rep 2023; 13 (01) 21637
  • 69 Chu TY, Zheng-Gérard C, Huang KY. et al. GPR97 triggers inflammatory processes in human neutrophils via a macromolecular complex upstream of PAR2 activation. Nat Commun 2022; 13 (01) 6385
  • 70 García-González G, Sánchez-González A, Hernández-Bello R. et al. Triggering of protease-activated receptors (PARs) induces alternative M2 macrophage polarization with impaired plasticity. Mol Immunol 2019; 114: 278-288
  • 71 Rao LVM, Pendurthi UR. Tissue factor-factor VIIa signaling. Arterioscler Thromb Vasc Biol 2005; 25 (01) 47-56
  • 72 Gleeson EM, O'Donnell JS, Hams E. et al. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from lipopolysaccharide-stimulated myeloid cells. Haematologica 2014; 99 (01) 185-193
  • 73 Oe Y, Hayashi S, Fushima T. et al. Coagulation factor Xa and protease-activated receptor 2 as novel therapeutic targets for diabetic nephropathy. Arterioscler Thromb Vasc Biol 2016; 36 (08) 1525-1533
  • 74 Posthuma JJ, Posma JJN, van Oerle R. et al. Targeting coagulation factor Xa promotes regression of advanced atherosclerosis in apolipoprotein-E deficient mice. Sci Rep 2019; 9 (01) 3909
  • 75 Redecha P, Franzke CW, Ruf W, Mackman N, Girardi G. Neutrophil activation by the tissue factor/factor VIIa/PAR2 axis mediates fetal death in a mouse model of antiphospholipid syndrome. J Clin Invest 2008; 118 (10) 3453-3461
  • 76 Zelaya H, Grunz K, Nguyen TS. et al. Nucleic acid sensing promotes inflammatory monocyte migration through biased coagulation factor VIIa signaling. Blood 2023:blood.2023021149
  • 77 Rudd KE, Johnson SC, Agesa KM. et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 2020; 395 (10219): 200-211
  • 78 Yang X, Cheng X, Tang Y. et al. Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure. Immunity 2019; 51 (06) 983-996.e6
  • 79 Pawlinski R, Wang JG, Owens III AP. et al. Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice. Blood 2010; 116 (05) 806-814
  • 80 Franco RF, de Jonge E, Dekkers PE. et al. The in vivo kinetics of tissue factor messenger RNA expression during human endotoxemia: relationship with activation of coagulation. Blood 2000; 96 (02) 554-559
  • 81 Wang JG, Manly D, Kirchhofer D, Pawlinski R, Mackman N. Levels of microparticle tissue factor activity correlate with coagulation activation in endotoxemic mice. J Thromb Haemost 2009; 7 (07) 1092-1098
  • 82 Mooberry MJ, Bradford R, Hobl EL, Lin FC, Jilma B, Key NS. Procoagulant microparticles promote coagulation in a factor XI-dependent manner in human endotoxemia. J Thromb Haemost 2016; 14 (05) 1031-1042
  • 83 Woei-A-Jin FJSH, De Kruif MD, Garcia Rodriguez P, Osanto S, Bertina RM. Microparticles expressing tissue factor are concurrently released with markers of inflammation and coagulation during human endotoxemia. J Thromb Haemost 2012; 10 (06) 1185-1188
  • 84 Campbell RA, Hisada Y, Denorme F. et al. Comparison of the coagulopathies associated with COVID-19 and sepsis. Res Pract Thromb Haemost 2021; 5 (04) e12525
  • 85 Hellum M, Øvstebø R, Brusletto BS, Berg JP, Brandtzaeg P, Henriksson CE. Microparticle-associated tissue factor activity correlates with plasma levels of bacterial lipopolysaccharides in meningococcal septic shock. Thromb Res 2014; 133 (03) 507-514
  • 86 Shi J, Tang Y, Liang F. et al. NLRP3 inflammasome contributes to endotoxin-induced coagulation. Thromb Res 2022; 214: 8-15
  • 87 Grover SP, Mackman N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol 2018; 38 (04) 709-725
  • 88 Zhang Y, Cui J, Zhang G. et al. Inflammasome activation promotes venous thrombosis through pyroptosis. Blood Adv 2021; 5 (12) 2619-2623
  • 89 Kumar S, Gupta E, Kaushik S. et al. Quantification of NETs formation in neutrophil and its correlation with the severity of sepsis and organ dysfunction. Clin Chim Acta 2019; 495: 606-610
  • 90 Stiel L, Mayeur-Rousse C, Helms J, Meziani F, Mauvieux L. First visualization of circulating neutrophil extracellular traps using cell fluorescence during human septic shock-induced disseminated intravascular coagulation. Thromb Res 2019; 183: 153-158
  • 91 Mao JY, Zhang JH, Cheng W, Chen JW, Cui N. Effects of neutrophil extracellular traps in patients with septic coagulopathy and their interaction with autophagy. Front Immunol 2021; 12: 757041
  • 92 Czaikoski PG, Mota JMSC, Nascimento DC. et al. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One 2016; 11 (02) e0148142
  • 93 Lauková L, Konečná B, Bábíčková J. et al. Exogenous deoxyribonuclease has a protective effect in a mouse model of sepsis. Biomed Pharmacother 2017; 93: 8-16
  • 94 Reber LL, Gillis CM, Starkl P. et al. Neutrophil myeloperoxidase diminishes the toxic effects and mortality induced by lipopolysaccharide. J Exp Med 2017; 214 (05) 1249-1258
  • 95 Bao W, Xing H, Cao S. et al. Neutrophils restrain sepsis associated coagulopathy via extracellular vesicles carrying superoxide dismutase 2 in a murine model of lipopolysaccharide induced sepsis. Nat Commun 2022; 13 (01) 4583
  • 96 Raghunathan V, Zilberman-Rudenko J, Olson SR, Lupu F, McCarty OJT, Shatzel JJ. The contact pathway and sepsis. Res Pract Thromb Haemost 2019; 3 (03) 331-339
  • 97 Toossi Z, Sedor JR, Mettler MA, Everson B, Young T, Ratnoff OD. Induction of expression of monocyte interleukin 1 by Hageman factor (factor XII). Proc Natl Acad Sci U S A 1992; 89 (24) 11969-11972
  • 98 Wachtfogel YT, Pixley RA, Kucich U. et al. Purified plasma factor XIIa aggregates human neutrophils and causes degranulation. Blood 1986; 67 (06) 1731-1737
  • 99 Silasi R, Keshari RS, Lupu C. et al. Inhibition of contact-mediated activation of factor XI protects baboons against S aureus-induced organ damage and death. Blood Adv 2019; 3 (04) 658-669
  • 100 Tucker EI, Verbout NG, Leung PY. et al. Inhibition of factor XI activation attenuates inflammation and coagulopathy while improving the survival of mouse polymicrobial sepsis. Blood 2012; 119 (20) 4762-4768
  • 101 Shorr AF, Bernard GR, Dhainaut JF. et al. Protein C concentrations in severe sepsis: an early directional change in plasma levels predicts outcome. Crit Care 2006; 10 (03) R92
  • 102 Sungurlu S, Kuppy J, Balk RA. Role of antithrombin III and tissue factor pathway in the pathogenesis of sepsis. Crit Care Clin 2020; 36 (02) 255-265
  • 103 Bernard GR, Vincent JL, Laterre PF. et al; Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344 (10) 699-709
  • 104 Napolitano F, Giudice V, Selleri C, Montuori N. Plasminogen system in the pathophysiology of sepsis: upcoming biomarkers. Int J Mol Sci 2023; 24 (15) 12376
  • 105 Pudjiadi AH, Adhyanisitha K, Pusponegoro HD, Suyoko DEM, Satari HI, Kaswandani N. The association between plasminogen activator inhibitor type-1 and clinical outcome in paediatric sepsis. Blood Coagul Fibrinolysis 2020; 31 (06) 377-381
  • 106 Koyama K, Madoiwa S, Nunomiya S. et al. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study. Crit Care 2014; 18 (01) R13
  • 107 Kwak SH, Wang XQ, He Q. et al. Plasminogen activator inhibitor-1 potentiates LPS-induced neutrophil activation through a JNK-mediated pathway. Thromb Haemost 2006; 95 (05) 829-835
  • 108 Relja B, Lustenberger T, Puttkammer B. et al. Thrombin-activatable fibrinolysis inhibitor (TAFI) is enhanced in major trauma patients without infectious complications. Immunobiology 2013; 218 (04) 470-476
  • 109 Muto Y, Suzuki K, Iida H. et al. EF6265, a novel inhibitor of activated thrombin-activatable fibrinolysis inhibitor, protects against sepsis-induced organ dysfunction in rats. Crit Care Med 2009; 37 (05) 1744-1749
  • 110 Naito M, Taguchi O, Kobayashi T. et al. Thrombin-activatable fibrinolysis inhibitor protects against acute lung injury by inhibiting the complement system. Am J Respir Cell Mol Biol 2013; 49 (04) 646-653
  • 111 Cruz DBD, Helms J, Aquino LR. et al. DNA-bound elastase of neutrophil extracellular traps degrades plasminogen, reduces plasmin formation, and decreases fibrinolysis: proof of concept in septic shock plasma. FASEB J 2019; 33 (12) 14270-14280
  • 112 Jackson BS, Pretorius E. Pathological clotting and deep vein thrombosis in patients with HIV. Semin Thromb Hemost 2019; 45 (02) 132-140
  • 113 Görek A, Akçay S, Ibiş OA, Atar I, Eyüboğlu FÖ. Herpes simplex virus infection, massive pulmonary thromboembolism, and right atrial thrombi in a single patient: case report. Heart Lung 2007; 36 (02) 148-153
  • 114 Kim SJ, Carestia A, McDonald B. et al. Platelet-mediated NET release amplifies coagulopathy and drives lung pathology during severe influenza infection. Front Immunol 2021; 12: 772859
  • 115 Middeldorp S, Coppens M, van Haaps TF. et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost 2020; 18 (08) 1995-2002
  • 116 Schechter ME, Andrade BB, He T. et al. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy. Sci Transl Med 2017; 9 (405) eaam5441
  • 117 Zafarani A, Razizadeh MH, Haghi A. Neutrophil extracellular traps in influenza infection. Heliyon 2023; 9 (12) e23306
  • 118 Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Front Immunol 2020; 11: 1446
  • 119 Asakura H, Ogawa H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int J Hematol 2021; 113 (01) 45-57
  • 120 Iba T, Levy JH, Levi M, Connors JM, Thachil J. Coagulopathy of coronavirus disease 2019. Crit Care Med 2020; 48 (09) 1358-1364
  • 121 Zhang S, Liu Y, Wang X. et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020; 13 (01) 120
  • 122 Middleton EA, He XY, Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020; 136 (10) 1169-1179
  • 123 Nicolai L, Leunig A, Brambs S. et al. Vascular neutrophilic inflammation and immunothrombosis distinguish severe COVID-19 from influenza pneumonia. J Thromb Haemost 2021; 19 (02) 574-581
  • 124 Veras FP, Pontelli MC, Silva CM. et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med 2020; 217 (12) e20201129
  • 125 Li J, Zhang K, Zhang Y, Gu Z, Huang C. Neutrophils in COVID-19: recent insights and advances. Virol J 2023; 20 (01) 169
  • 126 Leppkes M, Knopf J, Naschberger E. et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine 2020; 58: 102925
  • 127 Obermayer A, Jakob LM, Haslbauer JD, Matter MS, Tzankov A, Stoiber W. Neutrophil extracellular traps in fatal COVID-19-associated lung injury. Dis Markers 2021; 2021: 5566826
  • 128 Lim J, Puan KJ, Wang LW. et al. Data-driven analysis of COVID-19 reveals persistent immune abnormalities in convalescent severe individuals. Front Immunol 2021; 12: 710217
  • 129 Hottz ED, Azevedo-Quintanilha IG, Palhinha L. et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020; 136 (11) 1330-1341
  • 130 Canzano P, Brambilla M, Porro B. et al. Platelet and endothelial activation as potential mechanisms behind the thrombotic complications of COVID-19 patients. JACC Basic Transl Sci 2021; 6 (03) 202-218
  • 131 Guervilly C, Bonifay A, Burtey S. et al. Dissemination of extreme levels of extracellular vesicles: tissue factor activity in patients with severe COVID-19. Blood Adv 2021; 5 (03) 628-634
  • 132 Wright FL, Vogler TO, Moore EE. et al. Fibrinolysis shutdown correlation with thromboembolic events in severe COVID-19 infection. J Am Coll Surg 2020; 231 (02) 193-203.e1
  • 133 Whyte CS, Morrow GB, Mitchell JL, Chowdary P, Mutch NJ. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. J Thromb Haemost 2020; 18 (07) 1548-1555
  • 134 Huang P, Zuo Q, Li Y. et al. A vicious cycle: in severe and critically ill COVID-19 patients. Front Immunol 2022; 13: 930673
  • 135 Ranucci M, Sitzia C, Baryshnikova E. et al. Covid-19-associated coagulopathy: biomarkers of thrombin generation and fibrinolysis leading the outcome. J Clin Med 2020; 9 (11) 3487
  • 136 Tran F, Harris DMM, Scharmacher A. et al. Increased protease-activated receptor 1 autoantibodies are associated with severe COVID-19. ERJ Open Res 2022; 8 (04) 00379-02022
  • 137 Rovai ES, Alves T, Holzhausen M. Protease-activated receptor 1 as a potential therapeutic target for COVID-19. Exp Biol Med (Maywood) 2021; 246 (06) 688-694
  • 138 Dalal PJ, Muller WA, Sullivan DP. Endothelial cell calcium signaling during barrier function and inflammation. Am J Pathol 2020; 190 (03) 535-542
  • 139 Andonegui G, Bonder CS, Green F. et al. Endothelium-derived toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest 2003; 111 (07) 1011-1020
  • 140 Chu SJ, Tang SE, Pao HP, Wu SY, Liao WI. Protease-activated receptor-1 antagonist protects against lung ischemia/reperfusion injury. Front Pharmacol 2021; 12: 752507
  • 141 Hotoleanu C. Association between obesity and venous thromboembolism. Med Pharm Rep 2020; 93 (02) 162-168
  • 142 Stein PD, Beemath A, Olson RE. Obesity as a risk factor in venous thromboembolism. Am J Med 2005; 118 (09) 978-980
  • 143 Grainge MJ, West J, Card TR. Venous thromboembolism during active disease and remission in inflammatory bowel disease: a cohort study. Lancet 2010; 375 (9715): 657-663
  • 144 (WHO) WHO. Obesity. 2020. Accessed January 1, 2020 at: https://www.who.int/health-topics/obesity#tab=tab_1
  • 145 Kabrhel C, Varraso R, Goldhaber SZ, Rimm EB, Camargo CA. Prospective study of BMI and the risk of pulmonary embolism in women. Obesity (Silver Spring) 2009; 17 (11) 2040-2046
  • 146 Yang G, De Staercke C, Hooper WC. The effects of obesity on venous thromboembolism: a review. Open J Prev Med 2012; 2 (04) 499-509
  • 147 Sharma M, Boytard L, Hadi T. et al. Enhanced glycolysis and HIF-1α activation in adipose tissue macrophages sustains local and systemic interleukin-1β production in obesity. Sci Rep 2020; 10 (01) 5555
  • 148 Wang L, Chen L, Liu Z. et al. PAI-1 exacerbates white adipose tissue dysfunction and metabolic dysregulation in high fat diet-induced obesity. Front Pharmacol 2018; 9: 1087
  • 149 Samad F, Pandey M, Loskutoff DJ. Tissue factor gene expression in the adipose tissues of obese mice. Proc Natl Acad Sci U S A 1998; 95 (13) 7591-7596
  • 150 Rehill AM, Leon G, McCluskey S. et al. Glycolytic reprogramming fuels myeloid cell-driven hypercoagulability. J Thromb Haemost 2024; 22 (02) 394-409
  • 151 Nagai N, Van Hoef B, Lijnen HR. Plasminogen activator inhibitor-1 contributes to the deleterious effect of obesity on the outcome of thrombotic ischemic stroke in mice. J Thromb Haemost 2007; 5 (08) 1726-1731
  • 152 Napoleone E, DI Santo A, Amore C. et al. Leptin induces tissue factor expression in human peripheral blood mononuclear cells: a possible link between obesity and cardiovascular risk?. J Thromb Haemost 2007; 5 (07) 1462-1468
  • 153 Ayer JG, Song C, Steinbeck K, Celermajer DS, Ben Freedman S. Increased tissue factor activity in monocytes from obese young adults. Clin Exp Pharmacol Physiol 2010; 37 (11) 1049-1054
  • 154 Badeanlou L, Furlan-Freguia C, Yang G, Ruf W, Samad F. Tissue factor-protease-activated receptor 2 signaling promotes diet-induced obesity and adipose inflammation. Nat Med 2011; 17 (11) 1490-1497
  • 155 Asada Y, Yamashita A, Sato Y, Hatakeyama K. Pathophysiology of atherothrombosis: mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathol Int 2020; 70 (06) 309-322
  • 156 Olie RH, van der Meijden PEJ, Ten Cate H. The coagulation system in atherothrombosis: implications for new therapeutic strategies. Res Pract Thromb Haemost 2018; 2 (02) 188-198
  • 157 Grover SP, Mackman N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis 2020; 307: 80-86
  • 158 Tipping PG, Davenport P, Gallicchio M, Filonzi EL, Apostolopoulos J, Wojta J. Atheromatous plaque macrophages produce plasminogen activator inhibitor type-1 and stimulate its production by endothelial cells and vascular smooth muscle cells. Am J Pathol 1993; 143 (03) 875-885
  • 159 Kastl SP, Speidl WS, Katsaros KM. et al. Thrombin induces the expression of oncostatin M via AP-1 activation in human macrophages: a link between coagulation and inflammation. Blood 2009; 114 (13) 2812-2818
  • 160 Vorlova S, Koch M, Manthey HD. et al. Coagulation factor XII induces pro-inflammatory cytokine responses in macrophages and promotes atherosclerosis in mice. Thromb Haemost 2017; 117 (01) 176-187
  • 161 Nickel KF, Long AT, Fuchs TA, Butler LM, Renné T. Factor XII as a therapeutic target in thromboembolic and inflammatory diseases. Arterioscler Thromb Vasc Biol 2017; 37 (01) 13-20
  • 162 Hofbauer TM, Ondracek AS, Lang IM. Neutrophil extracellular traps in atherosclerosis and thrombosis. In: Von Eckardstein A, Binder CJ. eds. Prevention and Treatment of Atherosclerosis. Vol. 270. Handbook of Experimental Pharmacology. Cham: Springer International Publishing; 2020: 405-425
  • 163 Kovanen PT. Mast cells as potential accelerators of human atherosclerosis-from early to late lesions. Int J Mol Sci 2019; 20 (18) 4479
  • 164 Desai D, Dhoble P. Rapidly changing epidemiology of inflammatory bowel disease: Time to gear up for the challenge before it is too late. Indian J Gastroenterol 2023; (e-pub ahead of print) DOI: 10.1007/s12664-023-01453-6.
  • 165 Marcos-Jubilar M, Lecumberri R, Páramo JA. Immunothrombosis: molecular aspects and new therapeutic perspectives. J Clin Med 2023; 12 (04) 1399
  • 166 Kaddourah O, Numan L, Jeepalyam S, Abughanimeh O, Ghanimeh MA, Abuamr K. Venous thromboembolism prophylaxis in inflammatory bowel disease flare-ups. Ann Gastroenterol 2019; 32 (06) 578-583
  • 167 Danese S, Papa A, Saibeni S, Repici A, Malesci A, Vecchi M. Inflammation and coagulation in inflammatory bowel disease: the clot thickens. Am J Gastroenterol 2007; 102 (01) 174-186
  • 168 Dolapcioglu C, Soylu A, Kendir T. et al. Coagulation parameters in inflammatory bowel disease. Int J Clin Exp Med 2014; 7 (05) 1442-1448
  • 169 Kume K, Yamasaki M, Tashiro M, Yoshikawa I, Otsuki M. Activations of coagulation and fibrinolysis secondary to bowel inflammation in patients with ulcerative colitis. Intern Med 2007; 46 (17) 1323-1329
  • 170 Alkim H, Ayaz S, Alkim C, Ulker A, Sahin B. Continuous active state of coagulation system in patients with nonthrombotic inflammatory bowel disease. Clin Appl Thromb Hemost 2011; 17 (06) 600-604
  • 171 Jones GR, Bain CC, Fenton TM. et al. Dynamics of colon monocyte and macrophage activation during colitis. Front Immunol 2018; 9: 2764
  • 172 Deutschmann A, Schlagenhauf A, Leschnik B, Hoffmann KM, Hauer A, Muntean W. Increased procoagulant function of microparticles in pediatric inflammatory bowel disease: role in increased thrombin generation. J Pediatr Gastroenterol Nutr 2013; 56 (04) 401-407
  • 173 Palkovits J, Novacek G, Kollars M. et al. Tissue factor exposing microparticles in inflammatory bowel disease. J Crohn's Colitis 2013; 7 (03) 222-229
  • 174 Li T, Wang C, Liu Y. et al. Neutrophil extracellular traps induce intestinal damage and thrombotic tendency in inflammatory bowel disease. J Crohn's Colitis 2020; 14 (02) 240-253
  • 175 Drury B, Hardisty G, Gray RD, Ho GT. Neutrophil extracellular traps in inflammatory bowel disease: pathogenic mechanisms and clinical translation. Cell Mol Gastroenterol Hepatol 2021; 12 (01) 321-333
  • 176 Matthay MA. Severe sepsis: a new treatment with both anticoagulant and antiinflammatory properties. N Engl J Med 2001; 344 (10) 759-762
  • 177 Ranieri VM, Thompson BT, Barie PS. et al; PROWESS-SHOCK Study Group. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 2012; 366 (22) 2055-2064
  • 178 Williams PD, Zlokovic BV, Griffin JH, Pryor KE, Davis TP. Preclinical safety and pharmacokinetic profile of 3K3A-APC, a novel, modified activated protein C for ischemic stroke. Curr Pharm Des 2012; 18 (27) 4215-4222
  • 179 Mitsi M, Forsten-Williams K, Gopalakrishnan M, Nugent MA. A catalytic role of heparin within the extracellular matrix. J Biol Chem 2008; 283 (50) 34796-34807
  • 180 Brown RA, Lever R, Jones NA, Page CP. Effects of heparin and related molecules upon neutrophil aggregation and elastase release in vitro. Br J Pharmacol 2003; 139 (04) 845-853
  • 181 Li X, Zheng Z, Li X, Ma X. Unfractionated heparin inhibits lipopolysaccharide-induced inflammatory response through blocking p38 MAPK and NF-κB activation on endothelial cell. Cytokine 2012; 60 (01) 114-121
  • 182 Gupta Y, Maciorowski D, Zak SE. et al. Heparin: a simplistic repurposing to prevent SARS-CoV-2 transmission in light of its in-vitro nanomolar efficacy. Int J Biol Macromol 2021; 183: 203-212
  • 183 Tang Y, Wang X, Li Z. et al. Heparin prevents caspase-11-dependent septic lethality independent of anticoagulant properties. Immunity 2021; 54 (03) 454-467.e6
  • 184 Senolt L. Emerging therapies in rheumatoid arthritis: focus on monoclonal antibodies. F1000 Res 2019; 8: F1000 Faculty Rev-1549
  • 185 Ridker PM, Everett BM, Thuren T. et al; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377 (12) 1119-1131
  • 186 Doddapattar P, Dev R, Ghatge M. et al. Myeloid cell PKM2 deletion enhances efferocytosis and reduces atherosclerosis. Circ Res 2022; 130 (09) 1289-1305
  • 187 Dhanesha N, Patel RB, Doddapattar P. et al. PKM2 promotes neutrophil activation and cerebral thromboinflammation: therapeutic implications for ischemic stroke. Blood 2022; 139 (08) 1234-1245
  • 188 Zhang B, Shen J, Zhong Z, Zhang L. PKM2 aggravates cerebral ischemia reperfusion-induced neuroinflammation via TLR4/MyD88/TRAF6 signaling pathway. Neuroimmunomodulation 2021; 28 (01) 29-37
  • 189 Kulkarni PP, Tiwari A, Singh N. et al. Aerobic glycolysis fuels platelet activation: small-molecule modulators of platelet metabolism as anti-thrombotic agents. Haematologica 2019; 104 (04) 806-818
  • 190 Flora GD, Nayak MK, Ghatge M, Kumskova M, Patel RB, Chauhan AK. Mitochondrial pyruvate dehydrogenase kinases contribute to platelet function and thrombosis in mice by regulating aerobic glycolysis. Blood Adv 2023; 7 (11) 2347-2359
  • 191 Ryan TAJ, Hooftman A, Rehill AM. et al. Dimethyl fumarate and 4-octyl itaconate are anticoagulants that suppress tissue factor in macrophages via inhibition of type I interferon. Nat Commun 2023; 14 (01) 3513
  • 192 Martín Monreal MT, Rebak AS, Massarenti L. et al. Applicability of small-molecule inhibitors in the study of peptidyl arginine deiminase 2 (PAD2) and PAD4. Front Immunol 2021; 12: 716250
  • 193 Wu Z, Deng Q, Pan B. et al. Inhibition of PAD2 improves survival in a mouse model of lethal LPS-induced endotoxic shock. Inflammation 2020; 43 (04) 1436-1445
  • 194 Liu X, Arfman T, Wichapong K, Reutelingsperger CPM, Voorberg J, Nicolaes GAF. PAD4 takes charge during neutrophil activation: Impact of PAD4 mediated NET formation on immune-mediated disease. J Thromb Haemost 2021; 19 (07) 1607-1617
  • 195 Angeletti A, Volpi S, Bruschi M. et al. Neutrophil extracellular traps-DNase balance and autoimmunity. Cells 2021; 10 (10) 2667
  • 196 Lee YY, Park HH, Park W. et al. Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2-mediated neutrophil activities and cytokine storm. Biomaterials 2021; 267: 120389
  • 197 Albadawi H, Oklu R, Raacke Malley RE. et al. Effect of DNase I treatment and neutrophil depletion on acute limb ischemia-reperfusion injury in mice. J Vasc Surg 2016; 64 (02) 484-493
  • 198 Kumar R, Sonkar VK, Swamy J. et al. DNase 1 protects from increased thrombin generation and venous thrombosis during aging: cross-sectional study in mice and humans. J Am Heart Assoc 2022; 11 (02) e021188
  • 199 Weber C, Jenke A, Chobanova V. et al. Targeting of cell-free DNA by DNase I diminishes endothelial dysfunction and inflammation in a rat model of cardiopulmonary bypass. Sci Rep 2019; 9 (01) 19249
  • 200 Savchenko AS, Borissoff JI, Martinod K. et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood 2014; 123 (01) 141-148
  • 201 Jiménez-Alcázar M, Napirei M, Panda R. et al. Impaired DNase1-mediated degradation of neutrophil extracellular traps is associated with acute thrombotic microangiopathies. J Thromb Haemost 2015; 13 (05) 732-742
  • 202 Sohrabipour S, Muniz VS, Sharma N, Dwivedi DJ, Liaw PC. Mechanistic studies of DNase I activity: impact of heparin variants and PAD4. Shock 2021; 56 (06) 975-987