Klin Monbl Augenheilkd 2018; 235(03): 301-308
DOI: 10.1055/s-0043-125081
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Personalisierte Ophthalmologie – induzierte pluripotente Stammzellen als In-vitro-Modellsysteme für degenerative Netzhauterkrankungen

Personalized Ophthalmology – Induced Pluripotent Stem Cells for In Vitro Modelling of Retinal Degenerative Diseases
Caroline Brandl
1   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Regensburg
2   Institut für Humangenetik, Universität Regensburg
,
Bernhard H. F. Weber
2   Institut für Humangenetik, Universität Regensburg
› Author Affiliations
Further Information

Publication History

eingereicht 15 September 2017

akzeptiert 07 December 2017

Publication Date:
16 February 2018 (online)

Zusammenfassung

Die Suche nach kausalen Therapieoptionen für degenerative Netzhauterkrankungen kann mit einem detaillierten Verständnis pathologischer Vorgänge gezielt vorangetrieben werden. Alternativ kann sie sich auch auf einen eher ungerichteten Suchansatz für therapeutische Wirkstoffe verlassen. Für beide Forschungsansätze werden In-vitro- und, falls möglich, auch In-vivo-Krankheitsmodelle benötigt, die eine möglichst genaue Abbildung des primären Ortes der Schädigung reflektieren. Tiermodelle unterliegen Einschränkungen und können oft nur dezidierte Aspekte eines komplexen Krankheitsprozesses abbilden. Primärkulturen von Zelltypen des hinteren Augenpols sind lediglich invasiv bzw. post mortem zugänglich und aufgrund ihrer raschen Seneszenz nur ungenügend geeignet für zeitlich anspruchsvolle Analysen oder pharmakologische Suchansätze. Immortalisierte retinale Zelllinien wiederum unterscheiden sich in einigen Aspekten zu sehr von den nativen Zelltypen. Eine vielversprechende Alternative bieten induzierte pluripotente Stammzellen (iPSCs). Sie sind wenig invasiv zugänglich, patientenspezifisch generierbar, uneingeschränkt vermehrbar und können aufgrund ihrer Pluripotenz bereits jetzt in einige retinale Zelltypen gezielt ausdifferenziert werden. Diese iPSC-abgeleiteten retinalen Zellen gleichen nativen Zellen in vielen charakteristischen Schlüsseleigenschaften. In diesem Übersichtsartikel werden bereits etablierte In-vivo-und In-vitro-Krankheitsmodelle degenerativer Netzhauterkrankungen vorgestellt und das Potenzial von iPSCs für eine personalisierte In-vitro-Modellierung ausgeleuchtet. Darüber hinaus werden bisher etablierte iPSC-abgeleitete Zelltypen des hinteren Augenpols – insbesondere Zellen des retinalen Pigmentepithels – detaillierter betrachtet und ein Ausblick für das Potenzial dieser Zellen in der allgemeinen ophthalmologischen Forschung gegeben.

Abstract

Today, the search for therapeutic options to treat retinal degeneration often relies on an in-depth understanding of the underlying pathological events. Alternatively, it is conceivable to search, in an undirected screening approach, for chemical compounds affecting disease outcome. For both approaches, there is an urgent need for in vitro and, ideally, in vivo disease models that adequately reflect the site of pathology. Currently available animal models possess limitations as they often develop only defined aspects of disease. Primary cell cultures, derived from the posterior pole of the eye, can only be obtained after invasive surgery or are available post mortem, but due to rapid cell senescence are not suited for long-term analysis. Immortalized retinal cell lines, on the other hand, differ in many aspects from native cells. In this situation, a promising alternative could arise from induced pluripotent stem cells (iPSCs). This cell species can be generated via non-invasive techniques, they are patient-specific, can be propagated indefinitely, and theoretically can be differentiated in all types of retinal cells due to their pluripotent capacities. Importantly, the iPSC-derived retinal cells greatly resemble native cells in many characteristic traits. In this review we present a selection of established in vivo und in vitro models for retinal degenerative disease. We also discuss the potential of iPSCs for personalized in vitro modelling and provide an overview of existent iPSC-derived cell types of the posterior pole, particularly for cells of the retinal pigment epithelium. We finally give an outlook for the potential of such cells for basic research in ophthalmology.

 
  • Literatur

  • 1 Lim LS, Mitchell P, Seddon JM. et al. Age-related macular degeneration. Lancet 2012; 379: 1728-1738
  • 2 Weber BH, Charbel Issa P, Pauly D. et al. The role of the complement system in age-related macular degeneration. Dtsch Arztebl Int 2014; 111: 133-138
  • 3 Kellner U, Renner AB, Herbst SM. et al. [Hereditary retinal dystrophies]. Klin Monatsbl Augenheilkd 2012; 229: 171-193
  • 4 Renner AB, Kellner U. [Hereditary macular dystrophies]. Klin Monatsbl Augenheilkd 2016; 233: 1124-1141
  • 5 Pennesi ME, Neuringer M, Courtney RJ. Animal models of age related macular degeneration. Mol Aspects Med 2012; 33: 487-509
  • 6 Schmitz S. Der Experimentator: Zellkultur. Heidelberg: Spektrum Akademischer Verlag; 2011
  • 7 McFall RC, Sery TW, Makadon M. Characterization of a new continuous cell line derived from a human retinoblastoma. Cancer Res 1977; 37: 1003-1010
  • 8 Dunn KC, Aotaki-Keen AE, Putkey FR. et al. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 1996; 62: 155-169
  • 9 Samuel W, Jaworski C, Postnikova OA. et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis 2017; 23: 60-89
  • 10 Ramsden CM, Powner MB, Carr AJ. et al. Stem cells in retinal regeneration: past, present and future. Development 2013; 140: 2576-2585
  • 11 Thomson JA, Itskovitz-Eldor J, Shapiro SS. et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-1147
  • 12 Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 2016; 17: 183-193
  • 13 Dhamodaran K, Subramani M, Ponnalagu M. et al. Ocular stem cells: a status update!. Stem Cell Res Ther 2014; 5: 56
  • 14 Li T, Lewallen M, Chen S. et al. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells. Cell Res 2013; 23: 788-802
  • 15 Takahashi K, Tanabe K, Ohnuki M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-872
  • 16 Kim C. Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. Blood Res 2014; 49: 7-14
  • 17 Cong L, Zhang F. Genome engineering using CRISPR-Cas9 system. Methods Mol Biol 2015; 1239: 197-217
  • 18 Zhou T, Benda C, Dunzinger S. et al. Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 2012; 7: 2080-2089
  • 19 Wang Y, Liu J, Tan X. et al. Induced pluripotent stem cells from human hair follicle mesenchymal stem cells. Stem Cell Rev 2013; 9: 451-460
  • 20 Rais Y, Zviran A, Geula S. et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 2013; 502: 65-70
  • 21 Brandl C, Zimmermann SJ, Milenkovic VM. et al. In-depth characterisation of retinal pigment epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC). Neuromolecular Med 2014; 16: 551-564
  • 22 Krohne TU, Westenskow PD, Kurihara T. et al. Generation of retinal pigment epithelial cells from small molecules and OCT4 reprogrammed human induced pluripotent stem cells. Stem Cells Transl Med 2012; 1: 96-109
  • 23 Zhu Y, Carido M, Meinhardt A. et al. Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium. PLoS One 2013; 8: e54552
  • 24 Buchholz DE, Pennington BO, Croze RH. et al. Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med 2013; 2: 384-393
  • 25 Vugler A, Carr AJ, Lawrence J. et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol 2008; 214: 347-361
  • 26 Hayashi R, Ishikawa Y, Sasamoto Y. et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 2016; 531: 376-380
  • 27 Kamao H, Mandai M, Okamoto S. et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports 2014; 2: 205-218
  • 28 Zhong X, Gutierrez C, Xue T. et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 2014; 5: 4047
  • 29 Weed LS, Mills JA. Strategies for retinal cell generation from human pluripotent stem cells. Stem Cell Investig 2017; 4: 65
  • 30 Mikhailova A, Ilmarinen T, Uusitalo H. et al. Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Reports 2014; 2: 219-231
  • 31 Qiu X, Yang J, Liu T. et al. Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells. PLoS One 2012; 7: e32612
  • 32 Li D, Qiu X, Yang J. et al. Generation of human lens epithelial-like cells from patient-specific induced pluripotent stem cells. J Cell Physiol 2016; 231: 2555-2562
  • 33 Ding QJ, Zhu W, Cook AC. et al. Induction of trabecular meshwork cells from induced pluripotent stem cells. Invest Ophthalmol Vis Sci 2014; 55: 7065-7072
  • 34 Milenkovic A, Brandl C, Milenkovic VM. et al. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells. Proc Natl Acad Sci U S A 2015; 112: E2630-E2639
  • 35 Singh R, Shen W, Kuai D. et al. iPS cell modeling of Best disease: insights into the pathophysiology of an inherited macular degeneration. Hum Mol Genet 2013; 22: 593-607
  • 36 Barnea-Cramer AO, Wang W, Lu SJ. et al. Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci Rep 2016; 6: 29784
  • 37 Tucker BA, Mullins RF, Streb LM. et al. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. Elife 2013; 2: e00824
  • 38 Ohlemacher SK, Sridhar A, Xiao Y. et al. Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration. Stem Cells 2016; 34: 1553-1562
  • 39 Riazifar H, Jia Y, Chen J. et al. Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem Cells Transl Med 2014; 3: 424-432
  • 40 Tanaka T, Yokoi T, Tamalu F. et al. Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells. Sci Rep 2015; 5: 8344
  • 41 Abud EM, Ramirez RN, Martinez ES. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 2017; 94: 278-293.e9
  • 42 Muffat J, Li Y, Yuan B. et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 2016; 22: 1358-1367
  • 43 Pandya H, Shen MJ, Ichikawa DM. et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci 2017; 20: 753-759
  • 44 Adams WJ, Zhang Y, Cloutier J. et al. Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Reports 2013; 1: 105-113
  • 45 Belair DG, Whisler JA, Valdez J. et al. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells. Stem Cell Rev 2015; 11: 511-525
  • 46 Wiley LA, Burnight ER, DeLuca AP. et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Sci Rep 2016; 6: 30742
  • 47 Jin ZB, Okamoto S, Osakada F. et al. Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One 2011; 6: e17084
  • 48 Jin ZB, Okamoto S, Xiang P. et al. Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Transl Med 2012; 1: 503-509
  • 49 Parfitt DA, Lane A, Ramsden CM. et al. Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups. Cell Stem Cell 2016; 18: 769-781
  • 50 Brandl C, Grassmann F, Riolfi J. et al. Tapping stem cells to target AMD: challenges and prospects. J Clin Med 2015; 4: 282-303
  • 51 Choudhary P, Booth H, Gutteridge A. et al. Directing differentiation of pluripotent stem cells toward retinal pigment epithelium lineage. Stem Cells Transl Med 2017; 6: 490-501
  • 52 Marchetto MC, Yeo GW, Kainohana O. et al. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One 2009; 4: e7076
  • 53 Allsopp R. Telomere length and iPSC re-programming: survival of the longest. Cell Res 2012; 22: 614-615
  • 54 Singh R, Phillips MJ, Kuai D. et al. Functional analysis of serially expanded human iPS cell-derived RPE cultures. Invest Ophthalmol Vis Sci 2013; 54: 6767-6778