Horm Metab Res 2018; 50(03): 179-192
DOI: 10.1055/s-0043-123763
Review
© Georg Thieme Verlag KG Stuttgart · New York

MicroRNAs and Target Genes in Pituitary Adenomas

Yajuan Feng*
1   Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
,
Zhi-gang Mao*
2   Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
,
Xin Wang
1   Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
,
Qiu Du
1   Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
,
Mengyao Jian
1   Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
,
Dimin Zhu
2   Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
,
Zheng Xiao
2   Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
,
Hai-jun Wang
2   Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
,
Yong-hong Zhu
1   Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
› Author Affiliations
Further Information

Publication History

received 06 September 2017

accepted 15 November 2017

Publication Date:
19 January 2018 (online)

Abstract

Pituitary adenomas account for the top three primary intracranial tumors in terms of total incidence rates. The clinical symptoms presented by the disease are often characterized by a series of systemic endocrine disorders, severe occupational lesions, and even some malignant features, and therefore early diagnosis and predicting recurrence would be instructive for clinical treatment of pituitary adenomas. An increasing number of specific microRNA (miRNA) expression signatures have been identified in pituitary, and miRNAs are related with the pituitary tumorigenesis, dysfunction, neurodegeneration, and metastatic non-functioning pituitary carcinoma. Here, this paper reviews the effects of aberrant miRNA expression in human pituitary adenomas and summarizes some corresponding target genes and biological significance over the last 7 years (2010–2017).

* These authors contributed equally to this work


 
  • References

  • 1 Li X, Wang EL, Zhou H, Yoshimoto K, Qian ZR. MicroRNAs in Human Pituitary Adenomas. Int J Endocrinol 2014; 435171
  • 2 Aflorei ED, Korbonits M. Epidemiology and etiopathogenesis of pituitary adenomas. J Neurooncol 2014; 117: 379-394
  • 3 Melmed S. Pathogenesis of pituitary tumors. Nat Rev Endocrinol 2011; 7: 257-266
  • 4 Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012; 13: 271-282
  • 5 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297
  • 6 Sivapragasam M, Rotondo F, Lloyd RV, Scheithauer BW, Cusimano M, Syro LV, Kovacs K. MicroRNAs in the Human Pituitary. Endocr Pathol 2011; 22: 134-143
  • 7 Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 2008; 105: 1608-1613
  • 8 Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853-858
  • 9 Tang H, Liu Q, Liu X, Ye F, Xie X, Xie X, Wu M. Plasma miR-185 as a predictive biomarker for prognosis of malignant glioma. J Cancer Res Ther 2015; 11: 630-634
  • 10 Zatelli MC, Degli UE. MicroRNAs and possible role in pituitary adenoma. Semin Reprod Med 2008; 26: 453-460
  • 11 Josson S, Gururajan M, Sung SY, Hu P, Shao C, Zhau HE, Liu C, Lichterman J, Duan P, Li Q, Rogatko A, Posadas EM, Haga CL, Chung LW. Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene 2015; 34: 2690-2699
  • 12 Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17: 211-215
  • 13 Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, Zhu YP, Shen YJ, Shi GH, Ye DW. Serum miRNA-21: Elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 2011; 71: 326-331
  • 14 Hasuwa H, Ueda J, Ikawa M, Okabe M. miR-200b and miR-429 function in mouse ovulation and are essential for female fertility. Science 2013; 341: 71-73
  • 15 Xu S, Linher-Melville K, Yang BB, Wu D, Li J. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology 2011; 152: 3941-3951
  • 16 Tian W, Wang G, Liu Y, Huang Z, Zhang C, Ning K, Yu C, Shen Y, Wang M, Li Y, Wang Y, Zhang B, Zhao Y. The miR-599 promotes non-small cell lung cancer cell invasion via SATB2. Biochem Biophys Res Commun 2017; 485: 35-40
  • 17 Wang P, Deng Y, Fu X. MiR-509-5p suppresses the proliferation, migration, and invasion of non-small cell lung cancer by targeting YWHAG. Biochem Biophys Res Commun 2017; 482: 935-941
  • 18 Sun Y, Zhao J, Yin X, Yuan X, Guo J, Bi J. miR-297 acts as an oncogene by targeting GPC5 in lung adenocarcinoma. Cell Prolif 2016; 49: 636-643
  • 19 Wang Q, Selth LA, Callen DF. MiR-766 induces p53 accumulation and G2/M arrest by directly targeting MDM4. Oncotarget 2017; 8: 29914-29924
  • 20 Gong C, Nie Y, Qu S, Liao JY, Cui X, Yao H, Zeng Y, Su F, Song E, Liu Q. miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res 2014; 74: 4341-4352
  • 21 Xing G, Luo Z, Zhong C, Pan X, Xu X. Influence of miR-155 on Cell apoptosis in rats with ischemic stroke: Role of the ras homolog enriched in brain (Rheb)/mTOR Pathway. Med Sci Monit 2016; 22: 5141-5153
  • 22 Leong JW, Abdullah S, Ling KH, Cheah PS. Spatiotemporal Expression and Molecular Characterization of miR-344b and miR-344c in the Developing Mouse Brain. Neural Plast 2016; 2016: 1951250
  • 23 Xia T, Liao Q, Jiang X, Shao Y, Xiao B, Xi Y, Guo J. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci Rep 2014; 4: 6088
  • 24 Kim DH, Chang MS, Yoon CJ, Middeldorp JM, Martinez OM, Byeon SJ, Rha SY, Kim SH, Kim YS, Woo JH. Epstein-Barr virus BARF1-induced NFkappaB/miR-146a/SMAD4 alterations in stomach cancer cells. Oncotarget 2016; 7: 82213-82227
  • 25 Steponaitiene R, Kupcinskas J, Langner C, Balaguer F, Venclauskas L, Pauzas H, Tamelis A, Skieceviciene J, Kupcinskas L, Malfertheiner P, Link A. Epigenetic silencing of miR-137 is a frequent event in gastric carcinogenesis. Mol Carcinog 2016; 55: 376-386
  • 26 Zheng XB, Chen XB, Xu LL, Zhang M, Feng L, Yi PS, Tang JW, Xu MQ. miR-203 inhibits augmented proliferation and metastasis of hepatocellular carcinoma residual in the promoted regenerating liver. Cancer Sci 2017; 108: 338-346
  • 27 Yarushkin AA, Kazantseva YA, Kobelev VS, Pustylnyak YA, Pustylnyak VO. Peroxisome proliferator-activated receptor gamma activation inhibits liver growth through miR-122-mediated downregulation of cMyc. Eur J Pharmacol 2017; 797: 39-44
  • 28 Di Ieva A, Butz H, Niamah M, Rotondo F, De Rosa S, Sav A, Yousef GM, Kovacs K, Cusimano MD. MicroRNAs as biomarkers in pituitary tumors. Neurosurgery 2014; 75: 181-189
  • 29 Farazi TA, Hoell JI, Morozov P, Tuschl T. MicroRNAs in human cancer. Adv Exp Med Biol 2013; 774: 1-20
  • 30 Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642-655
  • 31 Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79: 351-379
  • 32 Zhang QJ, Xu C. The role of microRNAs in the pathogenesis of pituitary tumors. Front Biosci (Landmark Ed) 2016; 21: 1-7
  • 33 Schneeberger M, Altirriba J, García A, Esteban Y, Castaño C, García-Lavandeira M, Alvarez CV, Gomis R, Claret M. Deletion of miRNA processing enzyme Dicer in POMC-expressing cells leads to pituitary dysfunction, neurodegeneration and development of obesity. Mol Metab 2012; 2: 74-85
  • 34 Wei Z, Zhou C, Liu M, Yao Y, Sun J, Xiao J, Ma W, Zhu H, Wang R. MicroRNA involvement in a metastatic non-functioning pituitary carcinoma. Pituitary 2015; 18: 710-721
  • 35 Mao ZG, He DS, Zhou J, Yao B, Xiao WW, Chen CH, Zhu YH, Wang HJ. Differential expression of microRNAs in GH-secreting pituitary adenomas. Diagn Pathol 2010; 5: 79
  • 36 Chen CH, Xiao WW, Jiang XB, Wang JW, Mao ZG, Lei N, Fan X, Song BB, Liao CX, Wang HJ, She ZG, Zhu YH. A novel marine drug, SZ-685C, induces apoptosis of MMQ pituitary tumor cells by downregulating miR-200c. Curr Med Chem 2013; 20: 2145-2154
  • 37 Liao C, Chen W, Fan X, Jiang X, Qiu L, Chen C, Zhu Y, Wang H. MicroRNA-200c inhibits apoptosis in pituitary adenoma cells by targeting the PTEN/Akt signaling pathway. Oncol Res 2013; 21: 129-136
  • 38 Palumbo T, Faucz FR, Azevedo M, Xekouki P, Iliopoulos D, Stratakis CA. Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene 2013; 32: 1651-1659
  • 39 Yuan B, Yu WY, Dai LS, Gao Y, Ding Y, Yu XF, Chen J, Zhang JB. Expression of microRNA26b and identification of its target gene EphA2 in pituitary tissues in Yanbian cattle. Mol Med Rep 2015; 12: 5753-5761
  • 40 Zhang Z, Florez S, Gutierrez-Hartmann A, Martin JF, Amendt BA. MicroRNAs regulate pituitary development, and microRNA 26b specifically targets lymphoid enhancer factor 1 (Lef-1), which modulates pituitary transcription factor 1 (Pit-1) expression. J Biol Chem 2010; 285: 34718-34728
  • 41 Liang HQ, Wang RJ, Diao CF, Li JW, Su JL, Zhang S. The PTTG1-targeting miRNAs miR-329, miR-300, miR-381, and miR-655 inhibit pituitary tumor cell tumorigenesis and are involved in a p53/PTTG1 regulation feedback loop. Oncotarget 2015; 6: 29413-29427
  • 42 Palmieri D, D'Angelo D, Valentino T, De Martino I, Ferraro A, Wierinckx A, Fedele M, Trouillas J, Fusco A. Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene 2012; 31: 3857-3865
  • 43 D'Angelo D, Palmieri D, Mussnich P, Roche M, Wierinckx A, Raverot G, Fedele M, Croce CM, Trouillas J, Fusco A. Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of miRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab 2012; 97: 1128-1138
  • 44 Zhou C, Wawrowsky K, Bannykh S, Gutman S, Melmed S. E2F1 induces pituitary tumor transforming gene (PTTG1) expression in human pituitary tumors. Mol Endocrinol 2009; 23: 2000-2012
  • 45 Schuldenfrei A, Belton A, Kowalski J, Talbot CJ, Di Cello F, Poh W, Tsai HL, Shah SN, Huso TH, Huso DL, Resar LM. HMGA1 drives stem cell, inflammatory pathway, and cell cycle progression genes during lymphoid tumorigenesis. BMC Genomics 2011; 12: 549
  • 46 Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan X, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in Health and Disease. Mol Aspects Med 2014; 40: 1-116
  • 47 Leone V, Langella C, D'Angelo D, Mussnich P, Wierinckx A, Terracciano L, Raverot G, Lachuer J, Rotondi S, Jaffrain-Rea ML, Trouillas J, Fusco A. Mir-23b and miR-130b expression is downregulated in pituitary adenomas. Mol Cell Endocrinol 2014; 390: 1-7
  • 48 Fan X, Mao Z, He D, Liao C, Jiang X, Lei N, Hu B, Wang X, Li Z, Lin Y, Gou X, Zhu Y, Wang H. Expression of somatostatin receptor subtype 2 in growth hormone-secreting pituitary adenoma and the regulation of miR-185. J Endocrinol Invest 2015; 38: 1117-1128
  • 49 Oystese KA, Evang JA, Bollerslev J. Non-functioning pituitary adenomas: growth and aggressiveness. Endocrine 2016; 53: 28-34
  • 50 Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, Tuppurainen K, Ebeling TM, Salmela PI, Paschke R, Gundogdu S, De Menis E, Makinen MJ, Launonen V, Karhu A, Aaltonen LA. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006; 312: 1228-1230
  • 51 Leontiou CA, Gueorguiev M, van der Spuy J, Quinton R, Lolli F, Hassan S, Chahal HS, Igreja SC, Jordan S, Rowe J, Stolbrink M, Christian HC, Wray J, Bishop-Bailey D, Berney DM, Wass JA, Popovic V, Ribeiro-Oliveira AJ, Gadelha MR, Monson JP, Akker SA, Davis JR, Clayton RN, Yoshimoto K, Iwata T, Matsuno A, Eguchi K, Musat M, Flanagan D, Peters G, Bolger GB, Chapple JP, Frohman LA, Grossman AB, Korbonits M. The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J Clin Endocrinol Metab 2008; 93: 2390-2401
  • 52 Cazabat L, Guillaud-Bataille M, Bertherat J, Raffin-Sanson ML. Mutations of the gene for the aryl hydrocarbon receptor-interacting protein in pituitary adenomas. Horm Res 2009; 71: 132-141
  • 53 Chahal HS, Stals K, Unterlander M, Balding DJ, Thomas MG, Kumar AV, Besser GM, Atkinson AB, Morrison PJ, Howlett TA, Levy MJ, Orme SM, Akker SA, Abel RL, Grossman AB, Burger J, Ellard S, Korbonits M. AIP mutation in pituitary adenomas in the 18th century and today. N Engl J Med 2011; 364: 43-50
  • 54 Denes J, Kasuki L, Trivellin G, Colli LM, Takiya CM, Stiles CE, Barry S, de Castro M, Gadelha MR, Korbonits M. Regulation of aryl hydrocarbon receptor interacting protein (AIP) protein expression by MiR-34a in sporadic somatotropinomas. PLoS One 2015; 10: e117107
  • 55 Trivellin G, Butz H, Delhove J, Igreja S, Chahal HS, Zivkovic V, Mckay T, Patocs A, Grossman AB, Korbonits M. MicroRNA miR-107 is overexpressed in pituitary adenomas and inhibits the expression of aryl hydrocarbon receptor-interacting protein in vitro. Am J Physiol Endocrinol Metab 2012; 303: 708-719
  • 56 Amaral FC, Torres N, Saggioro F, Neder L, Machado HR, Silva WA, Moreira AC, Castro M. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 2009; 94: 320-323
  • 57 Renjie W, Haiqian L. MiR-132, miR-15a and miR-16 synergistically inhibit pituitary tumor cell proliferation, invasion and migration by targeting Sox5. Cancer Lett 2015; 356: 568-578
  • 58 Stilling G, Sun Z, Zhang S, Jin L, Righi A, Kovācs G, Korbonits M, Scheithauer BW, Kovacs K, Lloyd RV. MicroRNA expression in ACTH-producing pituitary tumors: Up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine 2010; 38: 67-75
  • 59 Gentilin E, Tagliati F, Filieri C, Mole D, Minoia M, Rosaria AM, Degli UE, Zatelli MC. miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cdelta. Endocrinology 2013; 154: 1690-1700
  • 60 Gentilin E, Di Pasquale C, Gagliano T, Tagliati F, Benfini K, Ambrosio MR, Bondanelli M, Degli UE, Zatelli MC. Protein Kinase C Delta restrains growth in ACTH-secreting pituitary adenoma cells. Mol Cell Endocrinol 2016; 419: 252-258
  • 61 Garbicz F, Mehlich D, Rak B, Sajjad E, Maksymowicz M, Paskal W, Zielinski G, Wlodarski PK. Increased expression of the microRNA 106b~25 cluster and its host gene MCM7 in corticotroph pituitary adenomas is associated with tumor invasion and Crooke's cell morphology. Pituitary 2017; 20: 450-463
  • 62 Chen YX, Li Q, Wang CD, Su ZP, Li WQ, Chen XB, Wu ZB. Differential expression analysis of prolactinoma-related microRNAs. Zhonghua Yi Xue Za Zhi 2012; 92: 320-323
  • 63 Mussnich P, Raverot G, Jaffrain-Rea ML, Fraggetta F, Wierinckx A, Trouillas J, Fusco A, D'Angelo D. Downregulation of miR-410 targeting the cyclin B1 gene plays a role in pituitary gonadotroph tumors. Cell Cycle 2015; 14: 2590-2597
  • 64 Roche M, Wierinckx A, Croze S, Rey C, Legras-Lachuer C, Morel AP, Fusco A, Raverot G, Trouillas J, Lachuer J. Deregulation of miR-183 and KIAA0101 in Aggressive and Malignant Pituitary Tumors. Front Med (Lausanne) 2015; 2: 54
  • 65 Wu S, Gu Y, Huang Y, Wong TC, Ding H, Liu T, Zhang Y, Zhang X. Novel biomarkers for non-functioning invasive pituitary adenomas were identified by using analysis of microRNAs expression profile. Biochem Genet 2017; 55: 253-267
  • 66 Butz H, Nemeth K, Czenke D, Liko I, Czirjak S, Zivkovic V, Baghy K, Korbonits M, Kovalszky I, Igaz P, Racz K, Patocs A. Systematic investigation of expression of G2/M transition genes reveals CDC25 alteration in nonfunctioning pituitary adenomas. Pathol Oncol Res 2016; 23: 633-641
  • 67 Butz H, Liko I, Czirjak S, Igaz P, Korbonits M, Racz K, Patocs A. MicroRNA profile indicates downregulation of the TGFbeta pathway in sporadic non-functioning pituitary adenomas. Pituitary 2011; 14: 112-124
  • 68 Wang DS, Zhang HQ, Zhang B, Yuan ZB, Yu ZK, Yang T, Zhang SQ, Liu Y, Jia XX. miR-133 inhibits pituitary tumor cell migration and invasion via down-regulating FOXC1 expression. Genet Mol Res 2016; 15:
  • 69 Zheng Z, Zhang Y, Zhang Z, Yang Y, Song T. Effect of miR-106b on Invasiveness of Pituitary Adenoma via PTEN-PI3K/AKT. Med Sci Monit 2017; 23: 1277-1285
  • 70 Liang S, Chen L, Huang H, Zhi D. The experimental study of miRNA in pituitary adenomas. Turk Neurosurg 2013; 23: 721-727
  • 71 Butz H, Liko I, Czirjak S, Igaz P, Khan MM, Zivkovic V, Balint K, Korbonits M, Racz K, Patocs A. Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 2010; 95: 181-191
  • 72 Zhen W, Qiu D, Zhiyong C, Xin W, Mengyao J, Dimin Z, Chonghui H, Haijun W, Yonghong Z. MicroRNA-524-5p functions as a tumor suppressor in a human pituitary tumor-derived cell line. Horm Metab Res 2017; 49: 550-557
  • 73 Xu Y, Wang Y, Ma G, Wang Q, Wei G. CUL4A is overexpressed in human pituitary adenomas and regulates pituitary tumor cell proliferation. J Neurooncol 2014; 116: 625-632
  • 74 Righi A, Zhang S, Jin L, Scheithauer BW, Kovacs K, Kovacs G, Goth MI, Korbonits M, Lloyd RV. Analysis of IMP3 expression in normal and neoplastic human pituitary tissues. Endocr Pathol 2010; 21: 25-31
  • 75 Chile T, Correa-Giannella ML, Fortes MA, Bronstein MD, Cunha-Neto MB, Giannella-Neto D, Giorgi RR. Expression of CRABP1, GRP, and RERG mRNA in clinically non-functioning and functioning pituitary adenomas. J Endocrinol Invest 2011; 34: 214-218
  • 76 Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer 2010; 46: 298-311
  • 77 Teo MT, Landi D, Taylor CF, Elliott F, Vaslin L, Cox DG, Hall J, Landi S, Bishop DT, Kiltie AE. The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis 2012; 33: 581-586