Diabetologie und Stoffwechsel 2017; 12(05): 372-385
DOI: 10.1055/s-0043-119075
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Ist Diabetes heilbar durch bariatrische Chirurgie? – Mechanismen der Verbesserung der diabetischen Stoffwechsellage durch chirurgische Adipositastherapie –

Is it possible to cure diabetes mellitus with bariatric surgery? – Mechanisms of improvement of diabetes by bariatric surgery –
Matthias Weck
Further Information

Publication History

09 June 2017

29 August 2017

Publication Date:
20 September 2017 (online)

Zusammenfassung

In den letzten Jahren wurden die Ergebnisse randomisierter kontrollierter Studien publiziert, die im 5-Jahres-Verlauf die metabolischen Effekte der bariatrischen Chirurgie mit konventionellen Formen der Gewichtsreduktion vergleichen. Diese Studien zeigen unisono, dass die bariatrische Chirurgie hinsichtlich der Besserung der diabetischen Stoffwechsellage den konventionellen Behandlungsformen signifikant überlegen ist. Die Diabetesremissionsraten variieren abhängig von Ausgangsparametern, Operationsmethode und Follow-up-Dauer zwischen 95 und 23 %.

Ist Diabetes heilbar durch bariatrische Chirurgie? Die klare Antwort muss lauten: Nein, aber

  1. 35 – 50 % der Patienten mit Typ-2-Diabetes, die mittels bariatrischer Chirurgie initial nach Operation eine Diabetesremission erreichen konnten, erleben im weiteren Verlauf das Wiederkehren der „Krankheit“ d. h. erneut ansteigende Blutzuckerwerte.

  2. Die mittlere „krankheitsfreie Zeit“ beträgt 8,3 Jahre (Range 5 – 15 Jahre)

  3. Jedes Jahr, das die Patienten mit Typ-2-Diabetes in der Remission der Erkrankung verbrachten, war mit einer Reduktion des Risikos mikrovaskulärer Komplikationen um 19 % verbunden.

Insofern ist die bariatrische Chirurgie in Form von Roux-en-Y Gastric Bypass (RYGB), Laparoscopic Sleeve Gastrectomy (LSG) und den neueren Verfahren wie Omega Loop Bypass („Mini-Bypass“) oder biliopankreatische Diversion (BPD) eine wirkungsvolle therapeutische Option in der Behandlung des Diabetes mellitus Typ 2 und verringert offenbar auch das Risiko des Auftretens von mikrovaskulären Diabetesfolgekomplikationen. Je früher im Krankheitsverlauf die bariatrische Chirurgie SSherangezogen wird, desto effektiver scheinen diese Verfahren zu sein.

Welche der Operationen für Patienten mit Typ-2-Diabetes am besten geeignet ist, ist derzeit nicht definitiv entschieden. Der RYGB scheint etwas effektiver zu sein. Die Verfahren der bariatrischen Chirurgie gehören in das Spektrum der differenzialtherapeutischen Überlegungen insbesondere bei adipösen Patienten mit Typ-2-Diabetes mit einem BMI > 35 kg/m².

Die Mechanismen der Verbesserung der diabetischen Stoffwechsellage durch bariatrische Operationen werden anhand der aktuellen Literatur detailliert beschrieben. Die Indikationen, Kontraindikationen, Komplikationen und Therapiealgorithmen der bariatrischen Chirurgie bei Typ-2-Diabetes sind in den entsprechenden Leitlinien ausführlich dargestellt und nicht Gegenstand dieser Publikation.

Abstract

Recently, the results of long-term randomized controlled studies were published comparing the metabolic effects of bariatric surgery with conventional treatment strategies of obesity. Unanimously, these studies demonstrate that bariatric surgery improves glycemic control significantly compared to conventional medical treatment. Rates of diabetes remission range from 95 to 23 % depending on initial patients characteristics, operation method of bariatric surgery and follow-up duration.

Is diabetes curable with bariatric surgery? The clear answer is: no, but

  1. 35 – 50 % of diabetic patients, achieving diabetes remission after bariatric surgery, had a recurrence of the disease in terms of increasing blood glucose values during the following years.

  2. The mean “diabetes-free” time was 8.3 years (range 5 – 15 years).

  3. Each year that diabetic patients were in the remission of the disease, was associated with a reduction of the risk of microvascular complications of 19 %.

Therefore, bariatric surgery with Roux-en-Y gastric bypass (RYGB), laparoscopic sleeve gastrectomy (LSG), biliopancreatic diversion (BPD) or newer techniques as omega loop bypass are powerful therapeutic options in the treatment of diabetes and obesity. Bariatric surgery seems to reduce the risk of microvascular diabetic complications. Therefore, bariatric surgery should be involved in the therapeutic strategies as early as possible.

It is not definitively clear which type of bariatric operation is the best option for diabetic patients. RYGB seems to have some benefits. The methods of bariatric surgery should be included into the therapeutic armamentarium of each diabetes specialist.

The mechanisms of improvement of glycemic control by bariatric surgery will be described in detail according to recent literature data.

Indications, contraindications, complications or therapeutic algorithms of bariatric surgery of type 2 diabetes are listed in detail at common guidelines and are not part of this review.

 
  • Literatur

  • 1 Wadden TA. Treatment of obesity by moderate and severe caloric restriction. Results of clinical research trials. Ann Intern Med 1993; 119: 688-693
  • 2 Pories WJ, MacDonald Jr KG, Flickinger EG. et al. Is type II diabetes mellitus (NIDDM) a surgical disease?. Ann Surg 1992; 215: 633-643
  • 3 Christou NV, Sampalis JS, Liberman M. et al. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann Surg 2004; 240: 416-424
  • 4 Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial – a prospective controlled intervention study of bariatric surgery. J Intern Med 2013; 273: 219-234
  • 5 Romeo S, Maglio C, Burza MA. et al. Cardiovascular events after bariatric surgery in obese subjects with type 2 diabetes. Diabetes Care 2012; 35: 2613-2617
  • 6 Schauer PR, Kashyap SR, Wolski K. et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 2012; 366: 1567-1576
  • 7 Schauer PR, Bhatt DL, Kirwan JP. et al. Bariatric surgery versus intensive medical therapy for diabetes — 3-year outcomes. N Engl J Med 2014; 370: 2002-2013
  • 8 Schauer PR, Bhatt DL, Kirwan JP. et al. Bariatric surgery versus intensive medical therapy for diabetes — 5-year outcomes. N Engl J Med 2017; 376: 641-651
  • 9 Mingrone G, Panunzi S, De Gaetano A. et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 2012; 366: 1577-1585
  • 10 Mingrone G, Panunzi S, De Gaetano A. et al. Bariatric–metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 2015; 386: 964-973
  • 11 Cummings DE, Arterburn DE, Westbrook EO. et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia 2016; 59: 945-953
  • 12 Ikramuddin S, Korner J, Lee WJ. et al. Durability of addition of Roux-en-Y gastric bypass to lifestyle intervention and medical management in achieving primary treatment goals for uncontrolled type 2 diabetes in mild to moderate obesity: a randomized control trial. Diabetes Care 2016; 39: 1510-1518
  • 13 Buse JB, Caprio S, Cefalu WT. et al. How do we define cure of diabetes?. Diabetes Care 2009; 32: 2133-2135
  • 14 Sjöström L, Narbro K, Sjöström CD. et al. Effects of bariatric surgery on mortality in Swedish Obese Subjects. N Engl J Med 2007; 357: 741-752
  • 15 Sjöholm K, Pajunen P, Jacobson P. et al. Incidence and remission of type 2 diabetes in relation to degree of obesity at baseline and 2 year weight change: the Swedish Obese Subjects (SOS) study. Diabetologia 2015; 58: 1448-1553
  • 16 Sjöström L, Peltonen M, Jacobson P. et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 2014; 311: 2297-2304
  • 17 Carlsson LMS, Peltonen M, Ahlin S. et al. Bariatric surgery and prevention of type 2 diabetes in swedish obese subjects. N Engl J Med 2012; 367: 695-704
  • 18 Sjöholm K, Sjöström E, Carlsson LMS. et al. Weight change–adjusted effects of gastric bypass surgery on glucose metabolism: 2- and 10-year results from the Swedish Obese Subjects (SOS) Study. Diabetes Care 2016; 39: 625-631
  • 19 Coleman KJ, Haneuse S, Johnson E. et al. Long-term microvascular disease outcomes in patients with type 2 diabetes after bariatric surgery: Evidence for the legacy effect of surgery. Diabetes Care 2016; 39: 1400-1407
  • 20 Nathan DM, Engel S, Friday JB. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005; 353: 2643-2653
  • 21 Banks J, Adams ST, Laughlan K. et al. Roux-en-Y gastric bypass could slow progression of retinopathy in type 2 diabetes: a pilot study. Obes Surg 2015; 25: 777-781
  • 22 Brynskov T, Laugesen CS, Svenningsen AL. et al. Monitoring of diabetic retinopathy in relation to bariatric surgery: a prospective observational study. Obes Surg 2016; 26: 1279-1286
  • 23 Amin AM, Wharton H, Clarke M. et al. The impact of bariatric surgery on retinopathy in patients with type 2 diabetes: a retrospective cohort study. Surg Obes Relat Dis 2016; 12: 606-612
  • 24 Schulze zur Wiesch C, Lautenbach A, Aberle J. Adipositas – Neue Aspekte in der internistischen Betreuung vor und nach bariatrischer Chirurgie. Dtsch med Wochenschr 2016; 141: 1437-1440
  • 25 Malin SK, Bena J, Abood B. et al. Attenuated improvements in adiponectin and fat loss characterize type 2 diabetes non-remission status after bariatric surgery. Diabetes Obes Metab 2014; 16: 1230-1238
  • 26 Khanna V, Malin SK, Bena J. et al. Adults with long-duration type 2 diabetes have blunted glycemic and β-cell function improvements after bariatric surgery. Obesity 2015; 23: 523-526
  • 27 Lee WJ, Hur KY, Lakadawala M. et al. Predicting success of metabolic surgery: age, body mass index, C-peptide, and duration score. Surg Obes Relat Dis 2013; 9: 379-384
  • 28 Still CD, Wood CG, Benotti P. et al. A probability score for preoperative prediction of type 2 diabetes remission following RYGB surgery. Lancet Diabetes Endocrinol 2014; 2: 38-45
  • 29 Batterham RL, Cummings DE. Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care 2016; 39: 893-901
  • 30 Jackness C, Karmally W, Febres G. et al. Very low–calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell function in type 2 diabetic patients. Diabetes 2013; 62: 3027-3032
  • 31 Lingvay I, Guth E, Islam A. et al. Rapid improvement in diabetes after gastric bypass surgery: is it the diet or surgery?. Diabetes Care 2013; 36: 2741-2747
  • 32 Steven S, Hollingsworth KG, Al-Mrabeh A. et al. Very low-calorie diet and 6 months of weight stability in type 2 diabetes: pathophysiological changes in responders and nonresponders. Diabetes Care 2016; 39: 808-815
  • 33 Khoo CM, Muehlbauer MJ, Stevens RD. et al. Postprandial metabolite profiles reveal differential nutrient handling after bariatric surgery compared to matched caloric restriction. Ann Surg 2014; 259: 687-693
  • 34 Steven S, Hollingsworth KG, Small PK. et al. Weight loss decreases excess pancreatic triacylglycerol specifically in type 2 diabetes. Diabetes Care 2016; 39: 158-165
  • 35 Sumithran P, Prendergast LA, Delbridge E. et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 2011; 365: 1597-1604
  • 36 Salinari S, Bertuzzi A, Guidone C. et al. Insulin sensitivity and secretion changes after gastric bypass in normotolerant and diabetic obese subjects. Ann Surg 2013; 257: 462-468
  • 37 Albers PH, Bojsen-Møller KN, Dirksen C. et al. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol 2015; 309: R510-R524
  • 38 Dadson P, Landini L, Helmiö M. et al. Effect of bariatric surgery on adipose tissue glucose metabolism in different depots in patients with or without type 2 diabetes. Diabetes Care 2016; 39: 292-299
  • 39 Taylor R. Banting memorial lecture 2012 reversing the twin cycles of type 2 diabetes. Diabet Med 2013; 30: 267-275
  • 40 Lim EL, Hollingsworth KG, Aribisala BS. et al. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011; 54: 2506-2514
  • 41 Hoffstedt J, Andersson DP, Hogling DE. et al. Long-term protective changes in adipose tissue after gastric bypass. Diabetes Care 2017; 40: 77-84
  • 42 Farey JE, Preda TC, Fisher OM. et al. Effect of laparoscopic sleeve gastrectomy on fasting gastrointestinal, pancreatic, and adipose-derived hormones and on non-esterified fatty acids. Obes Surg 2017; 27: 399-407
  • 43 Thomas F, Smith GC, Lu J. et al. Differential acute impacts of sleeve gastrectomy, Roux-en-Y gastric bypass surgery and matched caloric restriction diet on insulin secretion, insulin effectiveness and non-esterified fatty acid levels among patients with type 2 diabetes. Obes Surg 2016; 26: 1924-1931
  • 44 Lindegaard KK, Jorgensen NB, Just R. et al. Effects of Roux-en-Y gastric bypass on fasting and postprandial inflammation-related parameters in obese subjects with normal glucose tolerance and in obese subjects with type 2 diabetes. Diabetol Metab Syndr 2015; 7: 12
  • 45 Lips MA, van Klinken JB, Pijl H. et al. Weight loss induced by very low calorie diet is associated with a more beneficial systemic inflammatory profile than by Roux-en-Y gastric bypass. Metabolism 2016; 65: 1614-1620
  • 46 Kelly AS, Ryder JR, Marlatt KL. et al. Changes in inflammation, oxidative stress and adipokines following bariatric surgery among adolescents with severe obesity. Int J Obes 2016; 40: 275-280
  • 47 Kratz M, Hagman DK, Kuzma JN. et al. Improvements in glycemic control after gastric bypass occur despite persistent adipose tissue inflammation. Obesity 2016; 24: 1438-1445
  • 48 Laferrère B, Teixeira J, McGinty J. et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab 2008; 93: 2479-2485
  • 49 Bose M, Oliván B, Teixeira J. et al. Do incretins play a role in the remission of type 2 diabetes after gastric bypass surgery: What are the evidence?. Obes Surg 2009; 19: 217-229
  • 50 Manning S, Pucci A, Batterham RL. GLP-1: A mediator of the beneficial metabolic effects of bariatric surgery?. Physiology (Bethesda) 2015; 30: 50-62
  • 51 Goldfine AB, Mun EC, Devine E. et al. Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal. J Clin Endocrinol Metab 2007; 92: 4678-4685
  • 52 Salehi M, Gastaldelli A, D'Alessio DA. et al. Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass. Gastroenterology 2014; 146: 669-680.e2
  • 53 Dutia R, Brakoniecki K, Bunker P. et al. Limited recovery of β-cell function after gastric bypass despite clinical diabetes remission. Diabetes 2014; 63: 1214-1223
  • 54 Chambers AP, Jessen L, Ryan KK. et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology 2011; 141: 950-958
  • 55 Service GJ, Thompson GB, Service FG. et al. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med 2005; 353: 249-254
  • 56 Patti ME, McMahon G, Mun EC. et al. Severe hypoglycaemia post-gastric bypass requiring partial pancreatectomy: evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia 2005; 48: 2236-2240
  • 57 Cummings DE. Gastric bypass and nesidioblastosis — Too much of a good thing for islets?. N Engl J Med 2005; 353: 300-302
  • 58 Karamanakos SN, Vagenas K, Kalfarentzos F. et al. Weight Loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg 2008; 247: 401-407
  • 59 Madsbad S, Holst JJ. GLP-1 as a mediator in the remission of type 2 diabetes after gastric bypass and sleeve gastrectomy surgery. Diabetes 2014; 63: 3172-3174
  • 60 Holst JJ, Gribble F, Horowitz M. et al. Roles of the gut in glucose homeostasis. Diabetes Care 2016; 39: 884-892
  • 61 Sloth B, Holst JJ, Flint A. et al. Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am J Physiol Endocrinol Metab 2007; 292: E1062-E1068
  • 62 Manning S, Pucci A, Batterham RL. Roux-en-Y gastric bypass: effects on feeding behavior and underlying mechanisms. J Clin Invest 2015; 125: 939-948
  • 63 Korner J, Inabnet W, Conwell IM. et al. Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity 2006; 14: 1553-1561
  • 64 Meek CL, Lewis HB, Reimann F. et al. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides 2016; 77: 28-37
  • 65 Svane MS, Jørgensen NB, Bojsen-Møller KN. et al. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery. Int J Obes 2016; 40: 1699-1706
  • 66 Cummings DE, Weigle DS, Frayo RS. et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 2002; 346: 1623-1630
  • 67 Ochner CN, Gibson C, Shanik M. et al. Changes in neurohormonal gut peptides following bariatric surgery. Int J Obes 2011; 35: 153-166
  • 68 Vigneshwaran B, Wahal A, Aggarwal S. et al. Impact of sleeve gastrectomy on type 2 diabetes mellitus, gastric emptying time, glucagon-like peptide 1 (GLP-1), ghrelin and leptin in non-morbidly obese subjects with bmi 30–35.0 kg/m2: a prospective study. Obes Surg 2016; 26: 2817-2823
  • 69 Nosso G, Griffo E, Cotugno M. et al. Comparative effects of roux-en-y gastric bypass and sleeve gastrectomy on glucose homeostasis and incretin hormones in obese type 2 diabetic patients: a one-year prospective study. Horm Metab Res 2016; 48: 312-317
  • 70 Ramon JM, Salvans S, Crous X. et al. Effect of Roux-en-Y gastric bypass vs sleeve gastrectomy on glucose and gut hormones: a prospective randomised trial. J Gastrointest Surg 2012; 16: 1116-1122
  • 71 Scholtz S, Miras AD, Chhina N. et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut 2014; 63: 891-902
  • 72 Sams VG, Blackledge C, Wijayatunga N. et al. Effect of bariatric surgery on systemic and adipose tissue inflammation. Surg Endosc 2016; 30: 3499-3504
  • 73 Bose M, Oliván B, Teixeira J. et al. Do incretins play a role in the remission of type 2 diabetes after gastric bypass surgery: what are the evidence?. Obes Surg 2009; 19: 217-229
  • 74 Rubino F, Forgione A, Cummings DE. et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg 2006; 244: 741-749
  • 75 Saeidi N, Meoli L, Nestoridi E. et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science 2013; 341: 406-410
  • 76 Salinari S, Debard C, Bertuzzi A. et al. Jejunal proteins secreted by db/db mice or insulin-resistant humans impair the insulin signaling and determine insulin resistance. PLOS ONE 2013; 8: e56258
  • 77 Salinari S, le Roux CW, Bertuzzi A. et al. Duodenal-jejunal bypass and jejunectomy improve insulin sensitivity in Goto-Kakizaki diabetic rats without changes in incretins or insulin secretion. Diabetes 2014; 63: 1069-1078
  • 78 Cavin JP, Couvelard A, Lebtahi R. et al. Differences in alimentary glucose absorption and intestinal disposal of blood glucose after Roux-en-Y gastric bypass vs sleeve gastrectomy. Gastroenterology 2016; 150: 454-464.e9
  • 79 Kir S, Beddow SA, Samuel VT. et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 2011; 331: 1621-1624
  • 80 Pournaras DJ, Glicksman C, Vincent RP. et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 2012; 153: 3613-3619
  • 81 Sachdev S, Wang Q, Billington C. et al. FGF-19 and bile acids increase following Roux-en-Y gastric bypass but not after medical management in patients with type 2 diabetes. Obes Surg 2016; 5: 957-965
  • 82 Gerhard GS, Styer AM, Wood GC. et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care 2013; 36: 1859-1864
  • 83 Albaugh VL, Flynn CR, Cai S. et al. Early increases in bile acids post Roux-en-Y gastric bypass are driven by insulin-sensitizing, secondary bile acids. J Clin Endocrinol Metab 2015; 100: E1225-E1233
  • 84 Rubino F, Nathan DM, Eckel RH. et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: A joint statement by international diabetes organizations. Diabetes Care 2016; 39: 861-877