Aktuelle Neurologie 2018; 45(04): 298-304
DOI: 10.1055/s-0043-118410
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Das Lambert-Eaton-Myasthenie-Syndrom: ein Überblick

The Lambert-Eaton Myasthenic Syndrome: an Overview
Siegfried Kohler
Integriertes Myasthenie Zentrum, Klinik für Neurologie, NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin
,
Andreas Meisel
Integriertes Myasthenie Zentrum, Klinik für Neurologie, NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
03 May 2018 (online)

Zusammenfassung

Das Lambert-Eaton-Myasthenie-Syndrom (LEMS) hat eine Prävalenz von etwa 5/1 000 000 und ist damit im Vergleich zur Myasthenia gravis (MG) ca. 10 – 20-mal seltener. Obwohl LEMS viele Ähnlichkeiten zur Myasthenia gravis aufweist, gibt es wichtige Unterschiede. Klinisch besteht eine vorwiegend proximal betonte belastungsabhängige Muskelschwäche, die bis hin zu einer respiratorischen Insuffizienz führen kann und häufig mit autonomen Störungen assoziiert ist. Ursächlich dafür sind Auto-Antikörper, welche gegen spannungsabhängige Kalziumkanäle (VGCC) vom P/Q-Typ an der Präsynapse gerichtet sind. Die Diagnosesicherung beruht vor allem auf der Detektion des pathologischen anti-VGCC Antikörpers sowie dem spezifischen Nachweis eines Inkrements von mindestens 60 % in der elektrophysiologischen Untersuchung eines betroffenen Muskels. Ein Inkrement ist dabei durch eine Steigerung des in Ruhe reduzierten Muskelsummenaktionspotenzials entweder nach maximaler Willkürinnervation oder hochfrequenter (≥ 20 Hz) Stimulation definiert. In einem Drittel der Patienten ist das LEMS paraneoplastischer Ätiologie, eine umfassende Tumorsuche nach Diagnosestellung ist daher notwendig. Klinisch gibt es einige Unterschiede zwischen dem paraneoplastischen (pLEMS) und dem rein autoimmunen (aiLEMS) Lambert-Eaton-Syndrom, die Hinweise geben können für die Ätiologie. Einen Anhalt dafür liefert der DELTA-P-Score und der SOX1-Antikörperstatus. Die häufigste zugrunde liegende Tumorerkrankung ist das kleinzellige Lungenkarzinom. Die Therapie basiert zunächst auf der Unterscheidung zwischen paraneoplastischer und autoimmuner Genese. pLEMS erfordert die Therapie der Tumorerkrankung. In der Regel profitieren aiLEMS- wie pLEMS-Patienten von einer symptomatischen Therapie mittels 3,4-Diaminopyridin (3,4-DAP), ggf. ergänzend Pyridostigmin sowie einer immunsuppressiven Langzeit-Therapie. Krisenhafte Verschlechterungen werden analog zur Myasthenia gravis mit Immunglobulinen, Plasmapherese oder Immunadsorption behandelt. Basierend auf positiven Erfahrungsberichten können auch moderne immunmodulatorische Ansätze, z. B. mit therapeutischen Antikörpern wie dem anti-CD20-Antikörper Rituximab, bei therapierefraktären Verläufen sinnvoll sein. Die Langzeitprognose des autoimmunen LEMS für eine klinische Stabilisierung mit weitgehender (pharmakologischer) Remission ist unserer Erfahrung nach gut, allerdings bestehen bei etwa 75 % deutliche Einschränkungen der Lebensqualität. Die Prognose der tumorassoziierten Form wird zu einem großen Teil von der Tumorerkrankung selbst und deren Therapie bestimmt. Kurative Verläufe der Tumorerkrankung und weitgehende Remission des pLEMS sind nicht selten.

Abstract

The Lambert-Eaton myasthenic syndrome (LEMS) has a prevalence of around 5/1 000 000 and is around 10 – 20 times rarer than myasthenia gravis (MG). Although LEMS does have a number of similarities to MG, there are important differences. The syndrome is characterized by a mostly proximally localised exercise-induced muscle weakness that can lead to respiratory failure, often accompanied by autonomous dysfunction. Disease symptoms are caused by autoantibodies directed against P/Q type voltage-gated calcium channels (VGCC) that are expressed in the presynaptic motor nerve terminals. The diagnosis of LEMS is based on the detection of the pathogenic anti-VGCC antibodies as well as the observation of an increment of at least 60 % in the electrophysiological examination of an affected muscle. An increment is defined by an increase of the at-rest reduced compound muscle action potential (CMAP) either after voluntary maximal innervation or after high frequency (≥ 20 Hz) stimulation. In almost one-third of patients, LEMS is of paraneoplastic origin. Therefore, an intensive tumour screening is necessary after diagnosis. There are some differences in the clinical presentation between paraneoplastic (pLEMS) and the exclusively autoimmune (aiLEMS) form of LEMS. With respect to this, the DELTA-P-Score and the detection of SOX1-antibody are important. The most frequent tumour associated with LEMS is small cell lung carcinoma (SCLC). Therapy is based on the initial distinction between paraneoplastic and autoimmune etiology. pLEMS requires therapy of underlying neoplasia. Usually, aiLEMS as well as pLEMS patients respond well to 3,4 diaminopyridine (3,4-DAP), often augmented with pyridostigmine. Similar to treatment of myasthenia gravis, long-term immunosuppressive treatment is usually required to control symptoms effectively. Myasthenic crisis in LEMS can be controlled by intensive care and immunoglobulins, plasmaphereses or immunoadsorption. Based on case reports, more specific immunomodulatory treatment approaches such as the B-cell-depleting therapeutic antibody rituximab should be considered in therapy refractory courses of LEMS. Long-term prognosis of autoimmune LEMS with respect to clinical stabilization with (pharmacological) remission is good, although in around 75 % of patients, significant reductions in quality of life remain. Prognosis of tumour-associated LEMS is largely determined by the tumour and its effective therapy. Curative treatment of the tumour disease as well as complete remission of pLEMS is possible.

 
  • Literatur

  • 1 Lambert EH, Eaton LM, Rooke ED. Defect of neuromuscular conduction associated with malignant neoplasms. Am J Physiol 1956; 187: 612-613
  • 2 Lang B, Newsom-Davis J, Wray D. et al. Autoimmune aetiology for myasthenic (Eaton-Lambert) syndrome. Lancet 1981; 2: 224-226
  • 3 Lennon VA, Lambert EH. Autoantibodies bind solubilized calcium channel-omega-conotoxin complexes from small cell lung carcinoma: a diagnostic aid for Lambert-Eaton myasthenic syndrome. Mayo Clin Proc 1989; 64: 1498-1504
  • 4 Spillane J, Ermolyuk Y, Cano-Jaimez M. et al. Lambert-Eaton syndrome IgG inhibits transmitter release via P/Q Ca2+ channels. Neurology 2015; 84: 575-579
  • 5 Titulaer MJ, Lang B, Verschuuren JJ. Lambert-Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurol 2011; 10: 1098-1107
  • 6 Gilhus NE. Lambert-eaton myasthenic syndrome; pathogenesis, diagnosis, and therapy. Autoimmune Dis 2011; 2011: 973808
  • 7 Padua L, Caliandro P, Di Iasi G. et al. Reliability of SFEMG in diagnosing myasthenia gravis: sensitivity and specificity calculated on 100 prospective cases. Clin Neurophysiol 2014; 125: 1270-1273
  • 8 Motomura M, Johnston I, Lang B. et al. An improved diagnostic assay for Lambert-Eaton myasthenic syndrome. J Neurol Neurosurg Psychiatry 1995; 58: 85-87
  • 9 Motomura M, Lang B, Johnston I. et al. Incidence of serum anti-P/O-type and anti-N-type calcium channel autoantibodies in the Lambert-Eaton myasthenic syndrome. J Neurol Sci 1997; 147: 35-42
  • 10 Lennon VA, Kryzer TJ, Griesmann GE. et al. Calcium-channel antibodies in the Lambert-Eaton syndrome and other paraneoplastic syndromes. N Engl J Med 1995; 332: 1467-1474
  • 11 O’Neill JH, Murray NM, Newsom-Davis J. The Lambert-Eaton myasthenic syndrome. A review of 50 cases. Brain 1988; 111: 577-596
  • 12 Mantegazza R, Meisel A, Sieb JP. et al. The European LEMS Registry: baseline demographics and treatment approaches. Neurol Ther 2015; 4: 105-124
  • 13 De Aizpurua HJ, Griesmann GE, Lambert EH. et al. Voltage-dependent Ca2+ channels in small cell carcinomas are blocked by autoantibodies from patients with Lambert-Eaton myasthenic syndrome. Ann N Y Acad Sci 1988; 540: 369-371
  • 14 Oguro-Okano M, Griesmann GE, Wieben ED. et al. Molecular diversity of neuronal-type calcium channels identified in small cell lung carcinoma. Mayo Clin Proc 1992; 67: 1150-1159
  • 15 Johnston I, Lang B, Leys K. et al. Heterogeneity of calcium channel autoantibodies detected using a small-cell lung cancer line derived from a Lambert-Eaton myasthenic syndrome patient. Neurology 1994; 44: 334-338
  • 16 Sher E, Comola M, Nemni R. et al. Calcium channel autoantibody and non-small-cell lung cancer in patients with Lambert-Eaton syndrome. Lancet 1990; 335: 413
  • 17 Codignola A, Tarroni P, Clementi F. et al. Calcium channel subtypes controlling serotonin release from human small cell lung carcinoma cell lines. J Biol Chem 1993; 268: 26240-26247
  • 18 Titulaer MJ, Maddison P, Sont JK. et al. Clinical Dutch-English Lambert-Eaton Myasthenic syndrome (LEMS) tumor association prediction score accurately predicts small-cell lung cancer in the LEMS. J Clin Oncol 2011; 29: 902-908
  • 19 Titulaer MJ, Wirtz PW, Willems LN. et al. Screening for small-cell lung cancer: a follow-up study of patients with Lambert-Eaton myasthenic syndrome. J Clin Oncol 2008; 26: 4276-4281
  • 20 Titulaer MJ, Soffietti R, Dalmau J. et al. Screening for tumours in paraneoplastic syndromes: report of an EFNS task force. Eur J Neurol 2011; 18: 19-e3
  • 21 Sabater L, Titulaer M, Saiz A. et al. SOX1 antibodies are markers of paraneoplastic Lambert-Eaton myasthenic syndrome. Neurology 2008; 70: 924-928
  • 22 Schoser B, Eymard B, Datt J. et al. Lambert-Eaton myasthenic syndrome (LEMS): a rare autoimmune presynaptic disorder often associated with cancer. J Neurol 2017; 264: 1854-1863 ; erratum: 1864
  • 23 Lundh H, Nilsson O, Rosen I. Treatment of Lambert-Eaton syndrome: 3,4-diaminopyridine and pyridostigmine. Neurology 1984; 34: 1324-1330
  • 24 Keogh M, Sedehizadeh S, Maddison P. Treatment for Lambert-Eaton myasthenic syndrome. Cochrane Database Syst Rev 2011; DOI: 10.1002/14651858.CD003279.pub3. CD003279
  • 25 Oh SJ, Shcherbakova N, Kostera-Pruszczyk A. et al. Amifampridine phosphate (Firdapse®) is effective and safe in a phase 3 clinical trial in LEMS. Muscle Nerve 2016; 53: 717-725
  • 26 Maddison P, McConville J, Farrugia ME. et al. The use of rituximab in myasthenia gravis and Lambert-Eaton myasthenic syndrome. J Neurol Neurosurg Psychiatry 2011; 82: 671-673
  • 27 Pellkofer HL, Voltz R, Kuempfel T. Favorable response to rituximab in a patient with anti-VGCC-positive Lambert-Eaton myasthenic syndrome and cerebellar dysfunction. Muscle Nerve 2009; 40: 305-308
  • 28 Maddison P, Gozzard P, Grainge MJ. et al. Long-term survival in paraneoplastic Lambert-Eaton myasthenic syndrome. Neurology 2017; 88: 1334-1339
  • 29 Harms L, Sieb JP, Williams AE. et al. Long-term disease history, clinical symptoms, health status, and healthcare utilization in patients suffering from Lambert Eaton myasthenic syndrome: Results of a patient interview survey in Germany. J Med Econ 2012; 15: 521-530