Klin Monbl Augenheilkd 2017; 234(09): 1132-1138
DOI: 10.1055/s-0043-118345
Kasuistik
Georg Thieme Verlag KG Stuttgart · New York

OCT-Angiografie bei exsudativer AMD mit vaskularisierter Pigmentepithelabhebung

OCT Angiography in Exudative AMD with Detachment of Vascularised Retinal Pigment Epithelium
Frederic Gunnemann
1   Retinologie, Augenzentrum am St. Franziskus-Hospital, Münster
,
Kai Rothaus
1   Retinologie, Augenzentrum am St. Franziskus-Hospital, Münster
,
Marie-Louise Farecki
1   Retinologie, Augenzentrum am St. Franziskus-Hospital, Münster
,
Henrik Faatz
1   Retinologie, Augenzentrum am St. Franziskus-Hospital, Münster
,
Benedikt Book
1   Retinologie, Augenzentrum am St. Franziskus-Hospital, Münster
,
Albrecht Lommatzsch
1   Retinologie, Augenzentrum am St. Franziskus-Hospital, Münster
2   Zentrum für Augenheilkunde, Universität Duisburg-Essen, Münster
,
Daniel Pauleikhoff
1   Retinologie, Augenzentrum am St. Franziskus-Hospital, Münster
2   Zentrum für Augenheilkunde, Universität Duisburg-Essen, Münster
› Author Affiliations
Further Information

Publication History

eingereicht 17 June 2017

akzeptiert 13 August 2017

Publication Date:
11 September 2017 (online)

Zusammenfassung

Hintergrund Ziel der vorliegenden erweiterten Fallbeschreibung ist die Darstellung choroidaler Neovaskularisationen (CNV) bei vaskularisierten Pigmentepithelabhebungen (PE-Abhebung) initial und unter Anti-VEGF-Therapie mittels OCT-Angiografie (OCT-A) im Vergleich zur konventionellen Diagnostik. CNV-Größe und Flow-Areal wurden in der OCT-A quantifiziert und diese Befunde mit anderen SD-OCT-Charakteristika der Läsion verglichen.

Patienten und Methode Bei 8 Patienten mit vaskularisierter PE-Abhebung wurde zusätzlich zur konventionellen Bildgebung eine OCT-A (Avanti, Optovue) durchgeführt. Auf diesen Aufnahmen wurde mit einer zum retinalen Pigmentepithel parallelen (RPE-parallel) Segmentierung das CNV-Areal manuell umgrenzt und die Größe sowie der Gefäßanteil (Flow-Areal) initial und nach der durchgeführten Anti-VEGF-Therapie ausgemessen. Gleichzeitig wurden der Visus (logMAR) und im SD-OCT die Höhe der PE-Abhebung und die NH-Dicke im Verlauf bestimmt und statistisch verglichen.

Ergebnisse Initial zeigte die Größe der CNV in der OCT-A eine große phänotypische Variationsbreite (0,33 – 1,35 mm2; Mittel 0,71 mm2) mit signifikanter Abnahme unter Therapie (0,44 – 0,84 mm2; Mittel 0,57 mm2; p = 0,02). Das Flow-Areal variierte ebenso initial (0,21 – 0,88 mm2; Mittel 0,45 mm2) und reduzierte sich unter Therapie (nach Therapie 0,08 – 0,44 mm2; Mittel 0,27 mm2; p = 0,07). Die Höhe der PE-Abhebung im SD-OCT war initial unterschiedlich (initial 274 – 1459 µm; Mittel 607 µm), zeigte unter Therapie aber nur eine geringe Veränderung (132 – 1317 µm; Mittel 524 µm; p = 0,09). Dies galt ebenso für die mittlere Netzhautdicke (vor der Therapie 315 µm, nach der Therapie 294 µm; p = 0,5). Der Visus verbesserte sich nach der Therapie im Mittel von initial 0,51 auf 0,45 logMAR ebenfalls nur gering (p = 0,7).

Schlussfolgerungen Die Kombination aus SD-OCT und OCT-A ermöglicht eine verbesserte Darstellung und Quantifizierung von CNV-Arealen bei vaskularisierten PE-Abhebungen. Hierdurch können Veränderungen in der Perfusion und Größe der CNV quantifiziert werden. Dies könnte neben den retinalen Aktivitätszeichen eine 2. Aktivitätsbeurteilung des CNV-Anteils unter einer Anti-VEGF-Therapie ergeben. Aufgrund der dreidimensionalen Grundstruktur können insbesondere bei diesem Subtyp der exsudativen AMD zukünftige dreidimensionale Darstellungsmöglichkeiten sowohl des strukturellen SD-OCT als auch der OCT-A von großer Bedeutung sein.

Abstract

Background The aim of the following extended case study was to analyse whether choroidal neovascularisation (CNV) in vascularised epithelial detachments (PED) in OCT angiography (OCT-A) can be better visualised in OCT-A than in the established angiographic methods during the course of anti-VEGF therapy and if possible used to quantify the CNV size and flow area. These findings were compared with other SD-OCT characteristics of the lesion (PED height, retinal thickness).

Patients and Methods 8 patients with PED and associated CNV were diagnosed with multimodal imaging and additionally OCT angiography was performed. The CNV region in the B-scan of the OCT-A was detected with a fine segmentation setting (20 µm) parallel and just below the retinal pigment epithelium (RPE). The CNV area was manually marked, and the size of the CNV and the vessel section (flow area) were analysed with the evaluation tool of the device. This measurement was performed both initially and after anti-VEGF therapy (3 injections). At the same time, the visual acuity (logMAR) and the SD-OCT parameters of PED height and retinal thickness were determined before and after therapy and also statistically compared.

Results Initially, the size of CNV in OCT-A showed a large phenotypic range of variation (0.33 – 1.35 mm2, mean 0.71 mm2). This decreased significantly under therapy (after therapy 0.44 – 0.84 mm2, mean 0.57 mm2, p = 0.02). The proportion of the vessels analysed within the CNV (flow area) varied as well (0.21 – 0.88 mm2, mean 0.45) and decreased under therapy (0.08 – 0.44 mm2 after therapy), mean 0.27 mm2, p = 0.07). The height of PED in SD-OCT was initially different (initially 274 – 1459 µm, mean 607 µm), but showed only small changes (132 – 1317 µm, mean 524 µm, p = 0.09) under therapy. This also applied to the mean retinal thickness (before therapy 315 µm, after therapy 294 µm, p = 0.5). Mean visual acuity also improved only slightly (p = 0.7) after therapy. from initially 0.51 to 0.45 logMAR.

Conclusions The combination of SD-OCT and OCT-A offers significantly improved visualisation and quantification of CNV in a vascularised PED. With the help of OCT-A imaging, changes in the perfusion/size of the CNV can be quantified. Together with the retinal activity signs, this allows a second activity assessment of the CNV under anti-VEGF therapy. Due to its three-dimensional structure, especially for this subtype of the exudative AMD, it is of the utmost importance to develop three-dimensional imaging for both structural SD-OCT and the OCT-A.

 
  • Literatur

  • 1 Pauleikhoff D, Löffert D, Spital G. et al. Pigment epithelial detachment in the elderly. Clinical differentiation, natural course and pathogenetic implications. Graefes Arch Clin Exp Ophthalmol 2002; 240: 533-538
  • 2 Yannuzzi LA, Negrão S, Lida T. et al. Retinal angiomatous proliferation in age-related macular degeneration. Retina 2001; 21: 416-434
  • 3 Ghazi NG. Retinal angiomatous proliferation in age-related macular degeneration. Retina 2002; 22: 509-511 author reply 512
  • 4 Zacks DN, Johnson MW. Retinal angiomatous proliferation: optical coherence tomographic confirmation of an intraretinal lesion. Arch Ophthalmol 2004; 122: 932-933
  • 5 Spaide RF, Klancnik jr. JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 2015; 133: 45-50
  • 6 Savastano MC, Lumbroso B, Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina 2015; 35: 2196-2203
  • 7 Pauleikhoff D, Heimes B, Ziegler M. et al. OCT angiography – Is this the future of macular diagnosis. Klin Monatsbl Augenheilk 2015; 232: 1069-1076
  • 8 Lang GE, Enders C, Werner JU. [New possibilities in retinal diagnostics using OCT angiography]. Klin Monatsbl Augenheilkd 2016; 233: 613-621
  • 9 Fingler J, Schwartz D, Yang C. et al. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. Opt Express 2007; 15: 12636-12653
  • 10 Fingler J, Readhead C, Schwartz DM. et al. Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid. Invest Ophthalmol Vis Sci 2008; 49: 5055-5059
  • 11 Yu L, Chen Z. Doppler variance imaging for three-dimensional retina and choroid angiography. J Biomed Opt 2010; 15: 016029
  • 12 Liu G, Qi W, Yu L. et al. Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging. Opt Express 2011; 19: 3657-3666
  • 13 Jia Y, Tan O, Tokayer J. et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 2012; 20: 4710-4725
  • 14 Mariampillai A, Standish BA, Moriyama EH. et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett 2008; 33: 1530-1532
  • 15 Mariampillai A, Leung MKK, Jarvi M. et al. Optimized speckle variance OCT imaging of microvasculature. Opt Lett 2010; 35: 1257-1259
  • 16 Kim DY, Fingler J, Werner JS. et al. In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed Opt Express 2011; 2: 1504-1513
  • 17 An L, Shen TT, Wang RK. Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina. J Biomed Opt 2011; 16: 106013
  • 18 Conroy L, DaCosta RS, Vitkin IA. Quantifying tissue microvasculature with speckle variance optical coherence tomography. Opt Lett 2012; 37: 3180-3182
  • 19 Mahmud MS, Cadotte DW, Vuong B. et al. Review of speckle and phase variance optical coherence tomography to visualize microvascular networks. J Biomed Opt 2013; 18: 50901
  • 20 Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina 2015; 35: 2163-2180
  • 21 Hoskin A, Bird AC, Sehmi K. Tears of detached retinal pigment epithelium. Br J Ophthalmol 1981; 65: 417-422
  • 22 Chuang EL, Bird AC. Bilaterality of tears of the retinal pigment epithelium. Br J Ophthalmol 1988; 72: 918-920
  • 23 Schoeppner G, Chuang EL, Bird AC. The risk of fellow eye visual loss with unilateral retinal pigment epithelial tears. Am J Ophthalmol 1989; 108: 683-685
  • 24 Gelisken F, Inhoffen W, Partsch M. et al. Retinal pigment epithelial tear after photodynamic therapy for choroidal neovascularization. Am J Ophthalmol 2001; 131: 518-520
  • 25 Arnold JJ, Blinder KJ, Bressler NM. et al. Acute severe visual acuity decrease after photodynamic therapy with verteporfin: case reports from randomized clinical trials – TAP and VIP report no. 3. Am J Ophthalmol 2004; 137: 683-696
  • 26 Axer-Siegel R, Ehrlich R, Rosenblatt I. et al. Photodynamic therapy for occult choroidal neovascularization with pigment epithelium detachment in age-related macular degeneration. Arch Ophthalmol 2004; 122: 453-459
  • 27 Chan CK, Meyer CH, Gross JG. et al. Retinal pigment epithelial tears after intravitreal bevacizumab injection for neovascular age-related macular degeneration. Retina 2007; 27: 541-551
  • 28 Gamulescu MA, Framme C, Sachs H. RPE-rip after intravitreal bevacizumab (Avastin) treatment for vascularised PED secondary to AMD. Graefes Arch Clin Exp Ophthalmol 2007; 245: 1037-1040
  • 29 Cunningham ET, Feiner L, Chung C. et al. Incidence of retinal pigment epithelial tears after intravitreal ranibizumab injection for neovascular age-related macular degeneration. Ophthalmology 2011; 118: 2447-2452
  • 30 Gutfleisch M, Heimes B, Schumacher M. et al. Long-term visual outcome of pigment epithelial tears in association with anti-VEGF therapy of pigment epithelial detachment in AMD. Eye (Lond) 2011; 25: 1181-1186
  • 31 Coco RM, Sanabria MR, Hernandez AG. et al. Retinal pigment epithelium tears in age-related macular degeneration treated with antiangiogenic drugs: a controlled study with long follow-up. Ophthalmologica 2012; 228: 78-83
  • 32 Doguizi S, Ozdek S. Pigment epithelial tears associated with anti-VEGF therapy: incidence, long-term visual outcome, and relationship with pigment epithelial detachment in age-related macular degeneration. Retina 2014; 34: 1156-1162
  • 33 Caramoy A, Fauser S, Kirchhof B. Fundus autofluorescence and spectral-domain optical coherence tomography findings suggesting tissue remodelling in retinal pigment epithelium tear. Br J Ophthalmol 2012; 96: 1211-1216
  • 34 Bartels S, Barrelmann A, Book B. et al. [Tear in retinal pigment epithelium under anti-VEGF therapy for exudative age-related macular degeneration: function recovery under intensive therapy]. Ophthalmologe 2014; 111: 460-464
  • 35 Heimes B, Farecki M-L, Bartels S. et al. Retinal pigment epithelial tear and anti-vascular endothelial growth factor therapy in exudative age-related macular degeneration: Clinical course and long-term prognosis. Retina 2016; 36: 868-874
  • 36 Lommatzsch A. Pigment epithelial detachment in exudative macular degeneration: clinical characteristics and therapeutic options. Ophthalmologe 2010; 107: 1115-1122
  • 37 Clemens CR, Bastian N, Alten F. et al. Prediction of retinal pigment epithelial tear in serous vascularized pigment epithelium detachment. Acta Ophthalmol (Copenh) 2014; 92: e50-e56
  • 38 Lehmann B, Heimes B, Gutfleisch M. et al. [Serous vascularized pigment epithelial detachment in exudative AMD. Morphological typing and risk of tears in the RPE]. Ophthalmologe 2015; 112: 49-56
  • 39 Phasukkijwatana N, Tan ACS, Chen X. et al. Optical coherence tomography angiography of type 3 neovascularization in age-related macular degeneration after antiangiogenic therapy. Br J Ophthalmol 2017; 101: 597-602
  • 40 Deutsche Ophthalmologische Gesellschaft. OCT-Angiographie in Deutschland: Präsentation, Nomenklatur und Zukunftswünsche. Ophthalmologe 2017; 114: 432-438