Exp Clin Endocrinol Diabetes
DOI: 10.1055/s-0043-115533
© Georg Thieme Verlag KG Stuttgart · New York

Thyroid Hormone-Induced Expression of the Hepatic Scaffold Proteins Sestrin2, β-Klotho, and FRS2α in Relation to FGF21-AMPK Signaling

Luis A. Videla1, Romina Vargas1, Barbara Riquelme1, Javier Fernández1, Virginia Fernández1
  • 1Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
Further Information

Publication History

received 29 May 2017
revised 29 May 2017

accepted 30 June 2017

Publication Date:
11 September 2017 (eFirst)


Thyroid hormone (3,3′,5-triiodothyronine, T3) accelerates energy metabolism in the liver through mechanisms involving upregulation of AMP-activated protein kinase (AMPK). This study aims to assess the influence of T3 on the expression of the scaffold proteins β-Klotho, fibroblast growth factor receptor substrate 2α (FRS2α), and Sestrin2 in relation to FGF21-AMPK signaling. Male Sprague-Dawley rats were given 0.1 mg T3/kg or hormone vehicle (controls) and studies were done 24 h after treatment. These include measurements of the mRNA expression (qPCR) of hepatic β-Klotho, FGF21, FGF21 receptor-1 (FGFR1), extracellular-signal-regulated kinase 1/2 (ERK1/2), FRS2α, ribosomal S6 kinase-1 (RSK1), liver kinase B1 (LKB1), AMPK, and Sestrin2. Also, protein levels of FGF21, FGFR1 (ELISA), and ERK1/2 (Western blot) were measured. T3 elicited a calorigenic response with higher hepatic mRNA expression of β-Klotho, FRS2α, and FGF21, increased serum FGF21, without changes in liver FGFR1 mRNA and its plasma levels. In addition, T3 enhanced ERK1/2 phosphorylation and the mRNA expression of ERK1/2, RSK1, LKB1, AMPK, and Sestrin2. T3 administration enhances liver FGF21-AMPK signaling involving upregulation of the scaffold proteins β-Klotho, FRS2α, and Sestrin2. β-Klotho and FRS2 induction favours the operation of the FGF21-FGFR1-β-Klotho complex as evidenced by the enhancement in ERK1/2 phosphorylation, whereas that of Sestrin2 recruits LKB1 to achieved AMPK activation, thus supporting a higher energy expenditure condition that may be desirable in some metabolic disorders