Aktuelle Neurologie 2018; 45(02): 127-134
DOI: 10.1055/s-0043-108060
© Georg Thieme Verlag KG Stuttgart · New York

Die Bedeutung des intestinalen Mikrobioms beim ischämischen Schlaganfall

Role of the Gut Microbiota in Ischemic Stroke
Katarzyna Winek
1   Experimentelle Neurologie, Charité – Universitätsmedizin Berlin
2   NeuroCure Clinical Research, Charité – Universitätsmedizin Berlin
3   Centrum für Schlaganfallforschung Berlin, Charité – Universitätsmedizin Berlin
Ulrich Dirnagl
1   Experimentelle Neurologie, Charité – Universitätsmedizin Berlin
2   NeuroCure Clinical Research, Charité – Universitätsmedizin Berlin
3   Centrum für Schlaganfallforschung Berlin, Charité – Universitätsmedizin Berlin
4   Klinik für Neurologie, Charité – Universitätsmedizin Berlin
5   Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Standort Berlin
6   Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Standort Berlin
Andreas Meisel
1   Experimentelle Neurologie, Charité – Universitätsmedizin Berlin
2   NeuroCure Clinical Research, Charité – Universitätsmedizin Berlin
3   Centrum für Schlaganfallforschung Berlin, Charité – Universitätsmedizin Berlin
4   Klinik für Neurologie, Charité – Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
17 October 2017 (online)


Experimentelle und klinische Studien der letzten Jahre belegen die wichtige Rolle der intestinalen Mikrobiota für die Homöostase des Zentralnervensystems (ZNS), aber auch für die Pathophysiologie von ZNS-Erkrankungen. Dabei spielt u. a. der modifizierende Einfluss der Mikrobiota auf die periphere Immunantwort eine wichtige Rolle, die wiederum einen modulierenden Effekt auf die Neuroinflammation im ZNS haben kann. Hier fassen wir die verfügbaren experimentellen und klinischen Daten zur Bedeutung des Mikrobioms beim Schlaganfall zusammen: 1) Schlaganfall verändert die intestinale Mikrobiota; 2) Mikrobiota kann die Prognose nach Schlaganfall beeinflussen; 3) Mikrobiota spielt eine wichtige Rolle in der Pathogenese von (Risikofaktoren) des Schlaganfalls. Aufgrund der vorliegenden klinischen und experimentellen Ergebnisse stehen für die nächsten Jahre klinisch relevante Entdeckungen zur Bedeutung der Darm-Mikrobiota beim Schlaganfall an.


Recent studies have provided evidence for the role of the gut microbiota in homeostasis of the central nervous system (CNS) and pathophysiology of its disorders, e. g. by regulation of the peripheral immune response. In this manuscript, we discuss the importance of the gut microbiota in stroke, by providing a summary of available clinical and experimental data suggesting that 1) stroke changes the gut microbiome, 2) microbiota modulate stroke outcome and 3) microbiota play an important role in the pathogenesis of stroke (risk factors). Currently available clinical and experimental evidence suggests an important role of gut microbiota in stroke and promises clinically relevant discoveries within the next years.

  • Literatur

  • 1 Qin J, Li R, Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65
  • 2 OʼHara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006; 7: 688-693
  • 3 Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9: 313-323
  • 4 Braniste V, Al-Asmakh M, Kowal C. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014; 6: 263ra158
  • 5 Erny D, Hrabe de Angelis AL, Jaitin D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18: 965-977
  • 6 Hoban AE, Stilling RM, Ryan FJ. et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry 2016; 6: e774
  • 7 Luczynski P, McVey Neufeld KA, Oriach CS. et al. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol 2016; DOI: 10.1093/ijnp/pyw020.
  • 8 De Paepe M, Leclerc M, Tinsley CR. et al. Bacteriophages: an underestimated role in human and animal health?. Front Cell Infect Microbiol 2014; 4: 39
  • 9 Ogilvie LA, Jones BV. The human gut virome: a multifaceted majority. Front Microbiol 2015; 6: 918
  • 10 Backhed F, Ley RE, Sonnenburg JL. et al. Host-bacterial mutualism in the human intestine. Science 2005; 307: 1915-1920
  • 11 Nguyen TL, Vieira-Silva S, Liston A. et al. How informative is the mouse for human gut microbiota research?. Dis Model Mech 2015; 8: 1-16
  • 12 Houlden A, Goldrick M, Brough D. et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 2016; 57: 10-20
  • 13 Singh V, Roth S, Llovera G. et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci 2016; 36: 7428-7440
  • 14 Swidsinski AL-B, Krüger V, Kirsch MS. Central nervous system and the colonic bioreactor: analysis of colonic microbiota in patients with stroke unravels unknown mechanisms of the host defense after brain injury. Intest Res 2012; 10: 332-342
  • 15 Karlsson FH, Fak F, Nookaew I. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012; 3: 1245
  • 16 Koren O, Spor A, Felin J. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A 2010; 108 (Suppl. 01) 4592-4598
  • 17 Yin J, Liao SX, He Y. et al. Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 2015; DOI: 10.1161/JAHA.115.002699.
  • 18 Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest 2015; 125: 926-938
  • 19 Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 2009; 136: 2003-2014
  • 20 Schulte-Herbruggen O, Quarcoo D, Meisel A. et al. Differential affection of intestinal immune cell populations after cerebral ischemia in mice. Neuroimmunomodulation 2009; 16: 213-219
  • 21 Caso JR, Hurtado O, Pereira MP. et al. Colonic bacterial translocation as a possible factor in stress-worsening experimental stroke outcome. Am J Physiol Regul Integr Comp Physiol 2009; 296: R979-985
  • 22 Tascilar N, Irkorucu O, Tascilar O. et al. Bacterial translocation in experimental stroke: what happens to the gut barrier?. Bratisl Lek Listy 2010; 111: 194-199
  • 23 Crapser J, Ritzel R, Verma R. et al. Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice. Aging (Albany NY) 2016; 8: 1049-1063
  • 24 Jandzinski M. Manipulation of the microbiome and its impact on functional recovery following ischemic stroke. Honors Scholar Theses Paper 2015; 414 DOI: http://digitalcommons.uconn.edu/srhonors_theses/414.
  • 25 Stanley D, Mason LJ, Mackin KE. et al. Translocation and dissemination of commensal bacteria in post-stroke infection. Nat Med 2016; 22: 1277-1284
  • 26 Hannawi Y, Hannawi B, Rao CP. et al. Stroke-associated pneumonia: major advances and obstacles. Cerebrovasc Dis 2013; 35: 430-443
  • 27 Meisel C, Schwab JM, Prass K. et al. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 2005; 6: 775-786
  • 28 Prass K, Braun JS, Dirnagl U. et al. Stroke propagates bacterial aspiration to pneumonia in a model of cerebral ischemia. Stroke 2006; 37: 2607-2612
  • 29 Benakis C, Brea D, Caballero S. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med 2016; 22: 516-523
  • 30 Prass K, Meisel C, Hoflich C. et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 2003; 198: 725-736
  • 31 Dirnagl U, Klehmet J, Braun JS. et al. Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke 2007; 38: 770-773
  • 32 Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med 2011; 17: 796-808
  • 33 Chamorro A, Meisel A, Planas AM. et al. The immunology of acute stroke. Nat Rev Neurol 2012; 8: 401-410
  • 34 Liesz A, Hu X, Kleinschnitz C. et al. Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke 2015; 46: 1422-1430
  • 35 Chow J, Mazmanian SK. Getting the bugs out of the immune system: do bacterial microbiota “fix” intestinal T cell responses?. Cell Host Microbe 2009; 5: 8-12
  • 36 Sun J, Wang F, Ling Z. et al. Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota. Brain Res 2016; 1642: 180-188
  • 37 Winek K, Engel O, Koduah P. et al. Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke 2016; 47: 1354-1363
  • 38 Nakasone C, Yamamoto N, Nakamatsu M. et al. Accumulation of gamma/delta T cells in the lungs and their roles in neutrophil-mediated host defense against pneumococcal infection. Microbes Infect 2007; 9: 251-258
  • 39 Marsland BJ, Trompette A, Gollwitzer ES. The gut-lung axis in respiratory disease. Ann Am Thorac Soc 2015; 12 (Suppl. 02) S150-S156
  • 40 Schuijt TJ, Lankelma JM, Scicluna BP. et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 2016; 65: 575-583
  • 41 Rosenfeld ME, Campbell LA. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost 2011; 106: 858-867
  • 42 Wang Z, Klipfell E, Bennett BJ. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472: 57-63
  • 43 Zhu W, Gregory JC, Org E. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016; 165: 111-124
  • 44 Koeth RA, Wang Z, Levison BS. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19: 576-585
  • 45 Tang WH, Wang Z, Levison BS. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368: 1575-1584
  • 46 Stepankova R, Tonar Z, Bartova J. et al. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J Atheroscler Thromb 2010; 17: 796-804
  • 47 Singh V, Yeoh BS, Vijay-Kumar M. Gut microbiome as a novel cardiovascular therapeutic target. Curr Opin Pharmacol 2016; 27: 8-12
  • 48 Troseid M, Ueland T, Hov JR. et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med 2015; 277: 717-726
  • 49 Troseid M, Hov JR, Nestvold TK. et al. Major increase in microbiota-dependent proatherogenic metabolite TMAO one year after bariatric surgery. Metab Syndr Relat Disord 2016; 14: 197-201
  • 50 Sacco RL, Benjamin EJ, Broderick JP. et al. American Heart Association Prevention Conference: IV. Prevention and rehabilitation of stroke. Risk factors. Stroke 1997; 28: 1507-1517
  • 51 Winek K, Dirnagl U, Meisel A. The gut microbiome as therapeutic target in central nervous system diseases: implications for stroke. Neurotherapeutics 2016; 13: 762-774
  • 52 Winek K, Meisel A, Dirnagl U. Gut microbiota impact on stroke outcome: Fad or fact?. J Cereb Blood Flow Metab 2016; 36: 891-898
  • 53 Schaller BJ, Graf R, Jacobs AH. Pathophysiological changes of the gastrointestinal tract in ischemic stroke. Am J Gastroenterol 2006; 101: 1655-1665
  • 54 Tottey W, Feria-Gervasio D, Gaci N. et al. Colonic transit time is a driven force of the gut microbiota composition and metabolism: in vitro evidence. J Neurogastroenterol Motil 2017; 23: 124-134
  • 55 Jernberg C, Lofmark S, Edlund C. et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 2007; 1: 56-66
  • 56 Ravel J, Wommack KE. All hail reproducibility in microbiome research. Microbiome 2014; 2: 8
  • 57 Servick K. Mouse microbes may make scientific studies harder to replicate. Science 2016; DOI: 10.1126/science.aah7199.
  • 58 Bleich A, Hansen AK. Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comp Immunol Microbiol Infect Dis 2012; 35: 81-92
  • 59 Sadler R, Singh V, Benakis C. et al. Microbiota differences between commercial breeders impacts the post-stroke immune response. Brain Behav Immun 2017; DOI: 10.1016/j.bbi.2017.03.011. [Epub ahead of print]
  • 60 Sivan A, Corrales L, Hubert N. et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350: 1084-1089
  • 61 Vetizou M, Pitt JM, Daillere R. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350: 1079-1084
  • 62 Ferguson JF, Allayee H, Gerszten RE. et al. Nutrigenomics, the microbiome, and gene-environment interactions: new directions in cardiovascular disease research, prevention, and treatment: a scientific statement from the American Heart Association. Circ Cardiovasc Genet 2016; 9: 291-313