Klin Monbl Augenheilkd 2018; 235(07): 840-845
DOI: 10.1055/s-0043-106856
Experimentelle Studie
Georg Thieme Verlag KG Stuttgart · New York

Wachstumsfaktorenkonzentration im Kulturüberstand von Keratozyten mit humanem Serum in vitro

Growth Factor Concentration in Keratocyte Supernatant after Incubation with Human Serum In Vitro
Nóra Szentmáry
1   Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes, Homburg/Saar
2   Klinik für Augenheilkunde, Semmelweis Universität, Budapest, Ungarn
,
Tanja Stachon
1   Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes, Homburg/Saar
,
Ming-Feng Wu
1   Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes, Homburg/Saar
,
Mona Bischoff
1   Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes, Homburg/Saar
,
Manuela Huber
1   Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes, Homburg/Saar
,
Achim Langenbucher
3   Institut für Experimentelle Ophthalmologie, Universität des Saarlandes, Homburg/Saar
,
Berthold Seitz
1   Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes, Homburg/Saar
› Author Affiliations
Further Information

Publication History

eingereicht 25 November 2016

akzeptiert 10 March 2017

Publication Date:
02 June 2017 (online)

Zusammenfassung

Hintergrund Die Anwendung von Serumaugentropfen (AS) stellt eine alternative Behandlungsmethode für therapieresistente korneale Epitheldefekte dar. Bei persistierenden Epitheldefekten könnten Zytokine, die von Keratozyten im Stroma produziert werden, eine entscheidende Rolle bei der epithelialen Wundheilung spielen. Ziel dieser Studie ist es, Transforming Growth Factor β1 (TGF-β1), Keratinocyte Growth Factor (KGF), Hepatocyte Growth Factor (HGF) und Fibroblast Growth Factor basic (FGFb) im Kulturüberstand von Keratozyten mit humanem Serum (HS) in vitro zu untersuchen.

Material und Methoden Serumaugentropfen von 10 Patienten wurden nach der Standardmethode der LIONS Hornhautbank Saar-Lor-Lux präpariert und bei − 80 °C tiefgefroren. Primäre humane Keratozyten wurden durch enzymatische Behandlung mit Kollagenase A (1 mg/ml) aus humanen Korneoskleralscheiben isoliert (n = 1) und in DMEM/Hamʼs Kulturmedium, versetzt mit 5% fetalem Kälberserum (FCS), kultiviert. Für den Testansatz wurden die Keratozyten mit 15 oder 30% HS (in DMEM/F14 ohne FCS) inkubiert und nach 24 h die Konzentration von TGF-β1, KGF, HGF und FGFb mittels Enzyme-linked Immunoabsorbent Assay (ELISA) aus dem Kulturüberstand bestimmt. Als Kontrolle wurden 15 oder 30% HS ohne Keratozyten nach 24 h Inkubationszeit (unter den gleichen Bedingungen wie die Keratozyten) verwendet.

Ergebnisse Die HGF-Konzentration mit beiden HS-Konzentrationen war im Kulturüberstand von Keratozyten signifikant höher, im Vergleich zur HS-Kontrolle (ohne Keratozyten) nach 24 h Inkubationszeit (p < 0,01). Die FGFb-Konzentration war im Kulturüberstand mit 30% HS signifikant höher im Vergleich zur Kontrollgruppe ohne Keratozyten nach 24 Stunden Inkubationszeit (p < 0,01). Die TGF-β1- und KGF-Konzentrationen im Kulturüberstand blieben durch die Keratozyten unverändert.

Schlussfolgerungen Durch die Anwesenheit von Keratozyten steigt die Konzentration von HGF und FGFb im Kulturmedium mit humanem Serum innerhalb von 24 Stunden an. Diese Konzentrationsänderungen könnten die Wundheilung bei Epitheldefekten beeinflussen.

Abstract

Purpose Application of serum eye drops is an alternative treatment option for therapy-resistant corneal epithelial defects. In case of persisting epithelial defects, cytokines, which are secreted from stromal keratocytes, may play a role in epithelial wound healing. Our aim was to analyze fibroblast growth factor basic (FGFb), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF) and transforming growth factor β1 (TGF-β1) concentration in the supernatant of keratocytes, after incubation with human serum (HS).

Materials and Methods Serum eye drops of 10 patients were prepared using the standards of the LIONS Eye Bank Saar-Lor-Lux, Trier/Westpfalz, and were stored at − 80 °C. Primary human keratocytes were isolated from human corneoscleral rings using collagenase A (1 mg/ml) (n = 1) and were cultured in DMEM/Hamʼs culture medium with 10% fetal bovine serum (FBS). Thereafter, keratocyte cultures were incubated in 15 or 30% HS (in DMEM/F14 without FBS) and FGFb, HGF, KGF and TGF-β1 concentration was determined with an enzyme-linked immunoabsorbent assay (ELISA) from the supernatant of the culture after 24 hours. We used 15 or 30% HS without keratocytes (under the same storage conditions) as controls.

Results HGF concentration was, for both HS concentrations, significantly higher in the supernatant of keratocytes, than in HS controls (without keratocytes) following 24 hours (p < 0.01). FGFb concentration was significantly increased in 30% HS with keratocytes compared to 30% HS without keratocytes after 24 hours (p < 0.01). TGF-β1 and KGF concentrations remained unchanged through keratocytes.

Conclusion HGF and FGFb concentrations increase in the supernatant of keratocytes, 24 hours after incubation with human serum. These concentration changes may play a role in wound healing of epithelial defects.

 
  • Literatur

  • 1 Rauz S, Saw VP. Serum eye drops, amniotic membrane and limbal epithelial stem cells – tools in the treatment of ocular surface disease. Cell Tissue Bank 2010; 11: 13-27
  • 2 Fox RI, Chan R, Michelson JB. et al. Beneficial effect of artificial tears made with autologous serum in patients with keratoconjunctivitis sicca. Arthritis Rheum 1984; 27: 459-461
  • 3 Tsubota K, Goto E, Shimmura S. et al. Treatment of persistent corneal epithelial defect by autologous serum application. Ophthalmology 1999; 106: 1984-1989
  • 4 Noble BA, Loh RS, MacLennan S. et al. Comparison of autologous serum eye drops with conventional therapy in a randomised controlled crossover trial for ocular surface disease. Br J Ophthalmol 2004; 88: 647-652
  • 5 Jeng BH, Dupps Jr. WJ. Autologous serum 50 % eyedrops in the treatment of persistent corneal epithelial defects. Cornea 2009; 28: 1104-1108
  • 6 Semeraro F, Forbice E, Braga O. et al. Evaluation of the efficacy of 50 % autologous serum eye drops in different ocular surface pathologies. Biomed Res Int 2014; 2014: 826970
  • 7 Liu L, Hartwig D, Harloff S. et al. An optimised protocol for the production of autologous serum eyedrops. Graefes Arch Clin Exp Ophthalmol 2005; 243: 706-714
  • 8 Chiang CC, Chen WL, Lin JM. et al. Allogeneic serum eye drops for the treatment of persistent corneal epithelial defect. Eye (Lond) 2009; 23: 290-293
  • 9 Harritshøj LH, Nielsen C, Ullum H. et al. Ready-made allogeneic ABO-specific serum eye drops: production from regular male blood donors, clinical routine, safety and efficacy. Acta Ophthalmol 2014; 92: 783-786
  • 10 Geerling G, Daniels JT, Dart JK. et al. Toxicity of natural tear substitutes in a fully defined culture model of human corneal epithelial cells. Invest Ophthalmol Vis Sci 2001; 42: 948-956
  • 11 Lavaju P, Sharma M, Sharma A. et al. Use of amniotic membrane and autologous serum eye drops in Moorenʼs ulcer. Nepal J Ophthalmol 2013; 5: 120-123
  • 12 Mukhopadhyay S, Sen S, Datta H. Comparative role of 20 % cord blood serum and 20 % autologous serum in dry eye associated with Hansenʼs disease: a tear proteomic study. Br J Ophthalmol 2014; 99: 108-112
  • 13 Celebi AR, Ulusoy C, Mirza GE. The efficacy of autologous serum eye drops for severe dry eye syndrome: a randomized double-blind crossover study. Graefes Arch Clin Exp Ophthalmol 2014; 252: 619-626
  • 14 Urzua CA, Vasquez DH, Huidobro A. et al. Randomized double-blind clinical trial of autologous serum versus artificial tears in dry eye syndrome. Curr Eye Res 2012; 37: 684-688
  • 15 Matsuo H, Tomidokoro A, Tomita G. et al. Topical application of autologous serum for the treatment of late-onset aqueous oozing or point-leak through filtering bleb. Eye (Lond) 2005; 19: 23-28
  • 16 Goto E, Shimmura S, Shimazaki J. et al. Treatment of superior limbic keratoconjunctivitis by application of autologous serum. Cornea 2001; 20: 807-810
  • 17 Geerling G, MacLennan S, Hartwig D. Autologous serum eye drops for ocular surface disorders. Br J Ophthalmol 2004; 88: 1467-1474
  • 18 Hu C, Ding Y, Chen J. et al. Basic fibroblast growth factor stimulates epithelial cell growth and epithelial wound healing in canine corneas. Vet Ophthalmol 2009; 12: 170-175
  • 19 Yan L, Wu W, Wang Z. et al. Comparative study of the effects of recombinant human epidermal growth factor and basic fibroblast growth factor on corneal epithelial wound healing and neovascularization in vivo and in vitro. Ophthalmic Res 2013; 49: 150-160
  • 20 Zhang J, Upadhya D, Lu L. et al. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development. PLoS One 2015; 10: e0117089
  • 21 Zelenka PS, Arpitha P. Coordinating cell proliferation and migration in the lens and cornea. Semin Cell Dev Biol 2008; 19: 113-124
  • 22 Fereira de Souza R, Kruse FE, Seitz B. Autologes Serum bei sonst therapieresistenten Hornhautepitheldefekten – Prospektive Studie an den ersten 70 Augen. Klin Monatsbl Augenheilkd 2001; 218: 720-726
  • 23 Carrington LM, Boulton M. Hepatocyte growth factor and keratinocyte growth factor regulation of epithelial and stromal corneal wound healing. J Cataract Refract Surg 2005; 31: 412-423
  • 24 Chandrasekher G, Kakazu AH, Bazan HE. HGF- and KGF-induced activation of PI-3K/p 70 s6 kinase pathway in corneal epithelial cells: its relevance in wound healing. Exp Eye Res 2001; 73: 191-202
  • 25 Daniels JT, Limb GA, Saarialho-Kere U. et al. Human corneal epithelial cells require MMP-1 for HGF-mediated migration on collagen I. Invest Ophthalmol Vis Sci 2003; 44: 1048-1055
  • 26 Matsumoto K, Nakamura T. Roles of HGF as a pleiotropic factor in organ regeneration. EXS 1993; 65: 225-249