J Knee Surg 2023; 36(12): 1247-1252
DOI: 10.1055/s-0042-1755377
Original Article

Size Comparison of the Cadaveric Anterior Cruciate Ligament Midsubstance Cross-Sectional Area and the Cross-Sectional Area of Semitendinosus Double-Bundle Anterior Cruciate Ligament Reconstruction Autografts in Surgery

1   Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
,
Takanori Iriuchishima
2   Department of Orthopaedic Surgery, Kamimoku Spa Hospital, Minakami, Japan
3   Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
,
Genki Iwama
4   Department of Orthopaedic Surgery, Nihon University Hospital, Tokyo, Japan
,
Makoto Suruga
4   Department of Orthopaedic Surgery, Nihon University Hospital, Tokyo, Japan
,
Takashi Horaguchi
4   Department of Orthopaedic Surgery, Nihon University Hospital, Tokyo, Japan
,
Shin Aizawa
3   Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
,
Kazuyoshi Nakanishi
1   Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
› Author Affiliations

Abstract

The purpose of this study was to compare the cadaveric midsubstance cross-sectional anterior cruciate ligament (ACL) area and the cross-sectional semitendinosus (ST) double-bundle ACL autograft area in surgery. Thirty-nine nonpaired formalin-fixed cadaveric knees and 39 subjects undergoing ST double-bundle ACL reconstruction were included in this study. After soft tissue resection, cadaveric knees were flexed at 90 degrees, and the tangential line of the femoral posterior condyles was marked and sliced on the ACL midsubstance. The cross-sectional ACL area was measured using Image J software. In the patients undergoing ACL surgery, the harvested ST was cut and divided into anteromedial (AM) bundle and posterolateral (PL) bundle. Each graft edge diameter was measured by a sizing tube, and the cross-sectional graft area was calculated: (AM diameter/2)2 × 3.14 + (PL diameter/2)2 × 3.14. Statistical analysis was performed for the comparison of the cross-sectional area between the cadaveric ACL midsubstance and the ST double-bundle ACL autografts. The cadaveric midsubstance cross-sectional ACL area was 49.0 ± 16.3 mm2. The cross-sectional ST double-bundle autografts area was 52.8 ± 7.6 mm2. The ST double-bundle autograft area showed no significant difference when compared with the midsubstance cross-sectional ACL area. ST double-bundle autografts were shown to be capable of reproducing the midsubstance cross-sectional ACL area.



Publication History

Received: 25 April 2020

Accepted: 19 June 2022

Article published online:
09 August 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Fu FH. Double-bundle ACL reconstruction. Orthopedics 2011; 34 (04) 281-283
  • 2 Fu FH, van Eck CF, Tashman S, Irrgang JJ, Moreland MS. Anatomic anterior cruciate ligament reconstruction: a changing paradigm. Knee Surg Sports Traumatol Arthrosc 2015; 23 (03) 640-648
  • 3 Iriuchishima T, Ingham SJ, Tajima G. et al. Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 2010; 18 (09) 1226-1231
  • 4 Tompkins M, Ma R, Hogan MV, Miller MD. What's new in sports medicine. J Bone Joint Surg Am 2011; 93 (08) 789-797
  • 5 Iriuchishima T, Tajima G, Ingham SJ. et al. Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model. Knee Surg Sports Traumatol Arthrosc 2009; 17 (06) 590-594
  • 6 Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH. Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 2: clinical application of surgical technique. Am J Sports Med 2011; 39 (09) 2016-2026
  • 7 Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T. Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 2008; 36 (09) 1675-1687
  • 8 Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH. A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 2009; 17 (03) 213-219
  • 9 Muneta T, Koga H, Mochizuki T. et al. A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double-bundle techniques. Arthroscopy 2007; 23 (06) 618-628
  • 10 van Eck CF, Schreiber VM, Mejia HA. et al. “Anatomic” anterior cruciate ligament reconstruction: a systematic review of surgical techniques and reporting of surgical data. Arthroscopy 2010; 26 (9, Suppl): S2-S12
  • 11 Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S. Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 1: basic science. Am J Sports Med 2011; 39 (08) 1789-1799
  • 12 Fujita N, Kuroda R, Matsumoto T. et al. Comparison of the clinical outcome of double-bundle, anteromedial single-bundle, and posterolateral single-bundle anterior cruciate ligament reconstruction using hamstring tendon graft with minimum 2-year follow-up. Arthroscopy 2011; 27 (07) 906-913
  • 13 Iriuchishima T, Tajima G, Shirakura K. et al. In vitro and in vivo AM and PL tunnel positioning in anatomical double bundle anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 2011; 131 (08) 1085-1090
  • 14 Mascarenhas R, Cvetanovich GL, Sayegh ET. et al. Does double-bundle anterior cruciate ligament reconstruction improve postoperative knee stability compared with single-bundle techniques? A systematic review of overlapping meta-analyses. Arthroscopy 2015; 31 (06) 1185-1196
  • 15 Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H. Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 2006; 22 (03) 240-251
  • 16 Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW. Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 2001; 29 (01) 58-66
  • 17 Iriuchishima T, Yorifuji H, Aizawa S, Tajika Y, Murakami T, Fu FH. Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc 2014; 22 (01) 207-213
  • 18 Iriuchishima T, Horaguchi T, Kubomura T, Morimoto Y, Fu FH. Evaluation of the intercondylar roof impingement after anatomical double-bundle anterior cruciate ligament reconstruction using 3D-CT. Knee Surg Sports Traumatol Arthrosc 2011; 19 (04) 674-679
  • 19 Iriuchishima T, Tajima G, Ingham SJ, Shen W, Smolinski P, Fu FH. Impingement pressure in the anatomical and nonanatomical anterior cruciate ligament reconstruction: a cadaver study. Am J Sports Med 2010; 38 (08) 1611-1617
  • 20 Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE. Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 2012; 28 (04) 526-531
  • 21 Conte EJ, Hyatt AE, Gatt Jr CJ, Dhawan A. Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 2014; 30 (07) 882-890
  • 22 Araki D, Kuroda R, Kubo S. et al. A prospective randomised study of anatomical single-bundle versus double-bundle anterior cruciate ligament reconstruction: quantitative evaluation using an electromagnetic measurement system. Int Orthop 2011; 35 (03) 439-446
  • 23 Bedi A, Maak T, Musahl V. et al. Effect of tunnel position and graft size in single-bundle anterior cruciate ligament reconstruction: an evaluation of time-zero knee stability. Arthroscopy 2011; 27 (11) 1543-1551
  • 24 Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Ménétrey J. Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 2006; 14 (03) 204-213
  • 25 Iwama G, Iriuchishima T, Horaguchi T, Aizawa S. Measurement of the whole and midsubstance femoral insertion of the anterior cruciate ligament: the comparison with the elliptically calculated femoral anterior cruciate ligament footprint area. Indian J Orthop 2019; 53 (06) 727-731
  • 26 Oka S, Schuhmacher P, Brehmer A, Traut U, Kirsch J, Siebold R. Histological analysis of the tibial anterior cruciate ligament insertion. Knee Surg Sports Traumatol Arthrosc 2016; 24 (03) 747-753
  • 27 Suruga M, Horaguchi T, Iriuchishima T. et al. The correlation between the femoral anterior cruciate ligament footprint area and the morphology of the distal femur: three-dimensional CT evaluation in cadaveric knees. Eur J Orthop Surg Traumatol 2019; 29 (04) 849-854
  • 28 Takahashi M, Doi M, Abe M, Suzuki D, Nagano A. Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Am J Sports Med 2006; 34 (05) 787-792
  • 29 Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL. Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 2002; 30 (05) 660-666
  • 30 Yahagi Y, Horaguchi T, Iriuchishima T, Suruga M, Iwama G, Aizawa S. Correlation between the mid-substance cross-sectional anterior cruciate ligament size and the knee osseous morphology. Eur J Orthop Surg Traumatol 2020; 30 (02) 291-296
  • 31 Van Zyl R, Van Schoor AN, Du Toit PJ. et al. The association between anterior cruciate ligament length and femoral epicondylar width measured on preoperative magnetic resonance imaging or radiograph. Arthrosc Sports Med Rehabil 2019; 2 (01) e23-e31
  • 32 Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 1984; 66 (03) 344-352
  • 33 Howell SM. Principles for placing the tibial tunnel and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 1998; 6 (Suppl. 01) S49-S55
  • 34 Tanksley JA, Werner BC, Conte EJ. et al. ACL roof impingement revisited: does the independent femoral drilling technique avoid roof impingement with anteriorly placed tibial tunnels?. Orthop J Sports Med 2017; 5 (05) 2325967117704152
  • 35 van der List JP, Zuiderbaan HA, Nawabi DH, Pearle AD. Impingement following anterior cruciate ligament reconstruction: comparing the direct versus indirect femoral tunnel position. Knee Surg Sports Traumatol Arthrosc 2017; 25 (05) 1617-1624
  • 36 Marzo JM, Bowen MK, Warren RF, Wickiewicz TL, Altchek DW. Intraarticular fibrous nodule as a cause of loss of extension following anterior cruciate ligament reconstruction. Arthroscopy 1992; 8 (01) 10-18
  • 37 Toritsuka Y, Shino K, Horibe S. et al. Second-look arthroscopy of anterior cruciate ligament grafts with multistranded hamstring tendons. Arthroscopy 2004; 20 (03) 287-293
  • 38 Natsu-ume T, Shino K, Nakata K, Nakamura N, Toritsuka Y, Mae T. Endoscopic reconstruction of the anterior cruciate ligament with quadrupled hamstring tendons. A correlation between MRI changes and restored stability of the knee. J Bone Joint Surg Br 2001; 83 (06) 834-837
  • 39 Harner CD, Livesay GA, Kashiwaguchi S, Fujie H, Choi NY, Woo SL. Comparative study of the size and shape of human anterior and posterior cruciate ligaments. J Orthop Res 1995; 13 (03) 429-434
  • 40 Hashemi J, Chandrashekar N, Cowden C, Slauterbeck J. An alternative method of anthropometry of anterior cruciate ligament through 3-D digital image reconstruction. J Biomech 2005; 38 (03) 551-555
  • 41 Iriuchishima T, Shirakura K, Yorifuji H, Aizawa S, Fu FH. Size comparison of ACL footprint and reconstructed auto graft. Knee Surg Sports Traumatol Arthrosc 2013; 21 (04) 797-803
  • 42 Muneta T, Takakuda K, Yamamoto H. Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. A cadaveric knee study. Am J Sports Med 1997; 25 (01) 69-72
  • 43 Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH. Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2013; 21 (05) 1111-1118
  • 44 Mariscalco MW, Flanigan DC, Mitchell J. et al. The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) Cohort Study. Arthroscopy 2013; 29 (12) 1948-1953