CC BY-NC-ND 4.0 · SynOpen 2022; 06(03): 198-207
DOI: 10.1055/s-0042-1751360
paper

Organo-photocatalytic Synthesis of Functionalized Pyrroles from 2H-Azirines and α-Substituted Nitroalkenes

Lalita Devi
a   Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur Road, Lucknow 226031, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
,
Poornima Mishra
a   Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur Road, Lucknow 226031, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
,
Ayushi Pokhriyal
a   Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur Road, Lucknow 226031, India
,
a   Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur Road, Lucknow 226031, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
› Author Affiliations
The authors thank the Department of Science & Technology – Science & Engineering Research Board (DST-SERB; project ref. No.: CRG/2020/000752) for financial support. L.D. thanks CSIR, New Delhi, and P.M. thanks UGC, New Delhi, for a Ph.D. Fellowship. A.P. thanks DST-SERB, New Delhi, for a Project Fellowship.


Abstract

An efficient organo-photocatalytic method for the synthesis of tetrasubstituted pyrroles bearing a ketone, ester, alcohol, or nitro group at the 3-position has been developed. The reaction involves visible-light-mediated formal [3+2] dipolar cycloaddition between 2H-azirines and α-substituted nitroalkenes followed by a denitration or debromination sequence. The notable features of the protocol are excellent regioselectivity, wide substrate scope, and high yields of the products.

Supporting Information



Publication History

Received: 15 July 2022

Accepted after revision: 05 August 2022

Article published online:
23 August 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Li Petri G, Spanό V, Spatola R, Holl R, Raimondi MV, Barraja P, Montalbano A. Eur. J. Med. Chem. 2020; 208: 112783
    • 1b Hatai J, Schmuck C. Acc. Chem. Res. 2019; 52: 1709
    • 1c Wood JM, Furkert DP, Brimble MA. Nat. Prod. Rep. 2019; 36: 289
    • 1d Wu C, Wang W, Fang L, Su W. Chin. Chem. Lett. 2018; 29: 1105
    • 1e Gholap SS. Eur. J. Med. Chem. 2016; 110: 13
    • 1f Domagala A, Jarosz T, Lapkowski M. Eur. J. Med. Chem. 2015; 100: 176
    • 1g Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
    • 1h Nisha, Kumar K, Kumar V. RSC Adv. 2015; 5: 10899
    • 2a Efimov IV, Kulikova LN, Miftyakhova AR, Matveeva MD, Voskressensky LG. ChemistrySelect 2021; 6: 13740
    • 2b Nazeri MT, Shaabani A. New J. Chem. 2021; 45: 21967
    • 2c Philkhana SC, Badmus FO, Dos Reis IC, Kartika R. Synthesis 2021; 53: 1531
    • 2d Singh N, Singh S, Kohli S, Singh A, Asiki H, Rathee G, Chandra R, Anderson EA. Org. Chem. Front. 2021; 8: 5550
    • 2e Borah B, Dwivedi KD, Chowhan LR. RSC Adv. 2021; 11: 13585
    • 2f Leonardi M, Estevez V, Villacampa M, Menendez JC. Synthesis 2019; 51: 816
    • 2g Zhao M.-N, Ren Z.-H, Yang D.-S, Guan Z.-H. Org. Lett. 2018; 20: 1287
    • 2h Quiclet-Sire B, Zard SZ. Synlett 2017; 28: 2685
    • 2i Zhu L, Yu Y, Mao Z, Huang X. Org. Lett. 2015; 17: 30
    • 2j Wang Y, Lei X, Tang Y. Chem. Commun. 2015; 51: 4507
    • 3a Xuan J, He X.-K, Xiao W.-J. Chem. Soc. Rev. 2020; 49: 2546
    • 3b Festa AA, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2019; 48: 4401
    • 3c Bogdos MK, Pinard E, Murphy JA. Beilstein J. Org. Chem. 2018; 14: 2035
    • 3d Nicholls TP, Leonori D, Bissember AC. Nat. Prod. Rep. 2016; 33: 1248
    • 3e Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
  • 4 Lei T, Liu W.-Q, Li J, Huang M.-Y, Yang B, Meng Q.-Y, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2016; 18: 2479
  • 5 Liu Y, Parodi A, Battaglioli S, Monari M, Protti S, Bandini M. Org. Lett. 2019; 21: 7782
  • 6 Borra S, Chandrasekhar D, Newar UD, Maurya RA. J. Org. Chem. 2019; 84: 1042
  • 7 Sahoo AK, Rakshit A, Dahiya A, Pan A, Patel BK. Org. Lett. 2022; 24: 1918
  • 8 Xuan J, Xia X.-D, Zeng T.-T, Feng Z.-J, Chen J.-R, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2014; 53: 5653
  • 9 Karki BS, Devi L, Pokhriyal A, Kant R, Rastogi N. Chem. Asian J. 2019; 14: 4793
  • 10 Pokhriyal A, Karki BS, Kant R, Rastogi N. J. Org. Chem. 2021; 86: 4661
  • 11 Kaur K, Namboothiri IN. N. Chimia 2012; 66: 213 ; and references cited therein
  • 12 Mohanazadeh F, Hosini M, Tajbakhsh M. Monatsh. Chem. 2005; 136: 2041
  • 13 Yamakawa T, Masaki M, Nohira H. Bull. Chem. Soc. Jpn. 1991; 64: 2730
    • 14a Shanbhag P, Nareddy PR, Dadwal M, Mobin SM, Namboothiri IN. N. Org. Biomol. Chem. 2010; 8: 4867
    • 14b Rastogi N, Namboothiri IN. N, Cojocaru M. Tetrahedron Lett. 2004; 45: 4745