Semin Respir Crit Care Med 2022; 43(05): 635-645
DOI: 10.1055/s-0042-1743290
Review Article

FeNO in Asthma

Lola Loewenthal
1   Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, United Kingdom
2   National Heart and Lung Institute, Imperial College London, United Kingdom
,
Andrew Menzies-Gow
1   Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, United Kingdom
› Author Affiliations

Abstract

Asthma is a common disease affecting 350 million people worldwide, which is characterized by airways inflammation and hyperreactivity. Historically diagnosis and treatment have been mainly based on symptoms, which have the potential to result in misdiagnosis and inappropriate treatment. Nitric oxide (NO) is exhaled in human breath and is a marker of airways inflammation. Levels of NO are increased in the exhaled breath of patients with type 2 asthma and fractional exhaled nitric oxide (FeNO) provides an objective biomarker of airway inflammation. FeNO testing is an accessible, noninvasive, and easy-to-use test. Cut-off values have been established by the American Thoracic Society (ATS), the Global Initiative for Asthma (GINA), and the National Institute for Health and Care Excellence (NICE) but vary between guidance. FeNO levels have been shown to be predictive of blood and sputum eosinophil levels but should not be used in isolation and current guidance emphasizes the importance of incorporating clinical symptoms and testing when utilizing FeNO results. The inclusion of FeNO testing can increase diagnostic accuracy of asthma, while high levels in asthmatic patients can help predict response to inhaled corticosteroids (ICS) and suppression of levels with ICS to monitor adherence. FeNO levels are also a predictor of asthma risk with increased exacerbation rates and accelerated decline in lung function associated with high levels as well as having an emerging role in predicting response to some biologic therapies in severe asthma. FeNO testing is cost-effective and has been shown, when combined with clinical assessment, to improve asthma management.



Publication History

Article published online:
04 March 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Global strategy for asthma management and prevention (2021 update). Global Initiative for Asthma, 2021. Accessed January 30, 2022 at: https://ginasthma.org/reports/
  • 2 GBD 2015 Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med 2017; 5 (09) 691-706
  • 3 National Health Interview Survey data. U.S. Department of Health and Human Services. Centers for Disease Control and Prevention, 2020. Accessed October 7, 2022 at: https://www.cdc.gov/asthma/nhis/2019/data.htm
  • 4 Kavanagh J, Jackson DJ, Kent BD. Over- and under-diagnosis in asthma. Breathe (Sheff) 2019; 15 (01) e20-e27
  • 5 Aaron SD, Vandemheen KL, FitzGerald JM. et al; Canadian Respiratory Research Network. Reevaluation of diagnosis in adults with physician-diagnosed asthma. JAMA 2017; 317 (03) 269-279
  • 6 Aaron SD, Vandemheen KL, Boulet LP. et al; Canadian Respiratory Clinical Research Consortium. Overdiagnosis of asthma in obese and nonobese adults. CMAJ 2008; 179 (11) 1121-1131
  • 7 Shaw D, Green R, Berry M. et al. A cross-sectional study of patterns of airway dysfunction, symptoms and morbidity in primary care asthma. Prim Care Respir J 2012; 21 (03) 283-287
  • 8 Pakhale S, Sumner A, Coyle D, Vandemheen K, Aaron S. (Correcting) misdiagnoses of asthma: a cost effectiveness analysis. BMC Pulm Med 2011; 11: 27
  • 9 Wu AC, Tantisira K, Li L, Schuemann B, Weiss ST, Fuhlbrigge AL. Childhood Asthma Management Program Research Group. Predictors of symptoms are different from predictors of severe exacerbations from asthma in children. Chest 2011; 140 (01) 100-107
  • 10 Reddel HK, Busse WW, Pedersen S. et al. Should recommendations about starting inhaled corticosteroid treatment for mild asthma be based on symptom frequency: a post-hoc efficacy analysis of the START study. Lancet 2017; 389 (10065): 157-166
  • 11 Chung KF. Personalised medicine in asthma: time for action: Number 1 in the Series “Personalised medicine in respiratory diseases” edited by Renaud Louis and Nicolas Roche. Eur Respir Rev 2017; 26 (145) 170064
  • 12 Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 2012; 18 (05) 716-725
  • 13 Carr TF, Zeki AA, Kraft M. Eosinophilic and noneosinophilic asthma. Am J Respir Crit Care Med 2018; 197 (01) 22-37
  • 14 Pavord ID, Beasley R, Agusti A. et al. After asthma: redefining airways diseases. Lancet 2018; 391 (10118): 350-400
  • 15 Ray A, Raundhal M, Oriss TB, Ray P, Wenzel SE. Current concepts of severe asthma. J Clin Invest 2016; 126 (07) 2394-2403
  • 16 Fahy JV. Type 2 inflammation in asthma–present in most, absent in many. Nat Rev Immunol 2015; 15 (01) 57-65
  • 17 Lloyd CM, Snelgrove RJ. Type 2 immunity: expanding our view. Sci Immunol 2018; 3 (25) 3
  • 18 Woodruff PG, Modrek B, Choy DF. et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 2009; 180 (05) 388-395
  • 19 Humbert M, Beasley R, Ayres J. et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 2005; 60 (03) 309-316
  • 20 Ortega HG, Liu MC, Pavord ID. et al; MENSA Investigators. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med 2014; 371 (13) 1198-1207
  • 21 FitzGerald JM, Bleecker ER, Nair P. et al; CALIMA Study Investigators. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2016; 388 (10056): 2128-2141
  • 22 Castro M, Corren J, Pavord ID. et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med 2018; 378 (26) 2486-2496
  • 23 Castro M, Zangrilli J, Wechsler ME. et al. Reslizumab treatment for moderate to severe asthma with elevated blood eosinophil levels. J Allergy Clin Immunol 2015; 135: Ab381
  • 24 Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet 2018; 391 (10122): 783-800
  • 25 Kulkarni NS, Hollins F, Sutcliffe A. et al. Eosinophil protein in airway macrophages: a novel biomarker of eosinophilic inflammation in patients with asthma. J Allergy Clin Immunol 2010; 126 (01) 61-9.e3
  • 26 Wenzel SE. Emergence of biomolecular pathways to define novel asthma phenotypes. Type-2 immunity and beyond. Am J Respir Cell Mol Biol 2016; 55 (01) 1-4
  • 27 Kim H, Ellis AK, Fischer D. et al. Asthma biomarkers in the age of biologics. Allergy Asthma Clin Immunol 2017; 13: 48
  • 28 Russell RJ, Brightling C. Pathogenesis of asthma: implications for precision medicine. Clin Sci (Lond) 2017; 131 (14) 1723-1735
  • 29 Dweik RA, Boggs PB, Erzurum SC. et al; American Thoracic Society Committee on Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 2011; 184 (05) 602-615
  • 30 Lane C, Knight D, Burgess S. et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax 2004; 59 (09) 757-760
  • 31 Lipworth B, Kuo CR, Chan R. 2020 updated asthma guidelines: clinical utility of fractional exhaled nitric oxide (FENO) in asthma management. J Allergy Clin Immunol 2020; 146 (06) 1281-1282
  • 32 Ozkan M, Dweik RA, Laskowski D, Arroliga AC, Erzurum SC. High levels of nitric oxide in individuals with pulmonary hypertension receiving epoprostenol therapy. Lung 2001; 179 (04) 233-243
  • 33 National Institute for Health and Care Excellence (NICE). Asthma: Diagnosis, Monitoring and Chronic Asthma Management. London: NICE; 2017
  • 34 Menzies-Gow A, Corren J, Bourdin A. et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med 2021; 384 (19) 1800-1809
  • 35 Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 1987; 84 (24) 9265-9269
  • 36 Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333 (6174): 664-666
  • 37 Antosova M, Mokra D, Pepucha L. et al. Physiology of nitric oxide in the respiratory system. Physiol Res 2017; 66 (Suppl. 02) S159-S172
  • 38 Smith AD, Cowan JO, Brassett KP, Herbison GP, Taylor DR. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med 2005; 352 (21) 2163-2173
  • 39 Barnes PJ, Kharitonov SA. Exhaled nitric oxide: a new lung function test. Thorax 1996; 51 (03) 233-237
  • 40 Moncada S, Palmer RM, Higgs EA. Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 1989; 38 (11) 1709-1715
  • 41 Hoyte FCL, Gross LM, Katial RK. Exhaled nitric oxide: an update. Immunol Allergy Clin North Am 2018; 38 (04) 573-585
  • 42 Guo FH, De Raeve HR, Rice TW, Stuehr DJ, Thunnissen FB, Erzurum SC. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Natl Acad Sci U S A 1995; 92 (17) 7809-7813
  • 43 Di Rosa M, Radomski M, Carnuccio R, Moncada S. Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages. Biochem Biophys Res Commun 1990; 172 (03) 1246-1252
  • 44 Radomski MW, Palmer RM, Moncada S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A 1990; 87 (24) 10043-10047
  • 45 Ricciardolo FLM. Multiple roles of nitric oxide in the airways. Thorax 2003; 58 (02) 175-182
  • 46 Saleh D, Ernst P, Lim S, Barnes PJ, Giaid A. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. FASEB J 1998; 12 (11) 929-937
  • 47 Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev 2004; 84 (03) 731-765
  • 48 Kacmarek RM, Ripple R, Cockrill BA, Bloch KJ, Zapol WM, Johnson DC. Inhaled nitric oxide. A bronchodilator in mild asthmatics with methacholine-induced bronchospasm. Am J Respir Crit Care Med 1996; 153 (01) 128-135
  • 49 Belvisi MG, Stretton CD, Yacoub M, Barnes PJ. Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans. Eur J Pharmacol 1992; 210 (02) 221-222
  • 50 Holguin F, Grasemann H, Sharma S. et al. L-Citrulline increases nitric oxide and improves control in obese asthmatics. JCI Insight 2019; 4 (24) 4
  • 51 Barnes PJ. NO or no NO in asthma?. Thorax 1996; 51 (02) 218-220
  • 52 Schiller B, Hammer J, Barben J, Trachsel D. Comparability of a hand-held nitric oxide analyser with online and offline chemiluminescence-based nitric oxide measurement. Pediatr Allergy Immunol 2009; 20 (07) 679-685
  • 53 Heaney LG, Busby J, Bradding P. et al; Medical Research Council UK Refractory Asthma Stratification Programme (RASP-UK). Remotely monitored therapy and nitric oxide suppression identifies nonadherence in severe asthma. Am J Respir Crit Care Med 2019; 199 (04) 454-464
  • 54 Menzies-Gow A, Mansur AH, Brightling CE. Clinical utility of fractional exhaled nitric oxide in severe asthma management. Eur Respir J 2020; 55 (03) 1901633
  • 55 American Thoracic Society, European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 2005; 171 (08) 912-930
  • 56 Kuo CR, Spears M, Haughney J. et al. Scottish consensus statement on the role of FeNO in adult asthma. Respir Med 2019; 155: 54-57
  • 57 Holguin F, Cardet JC, Chung KF. et al. Management of severe asthma: a European Respiratory Society/American Thoracic Society guideline. Eur Respir J 2020; 55 (01) 55
  • 58 Price DB, Buhl R, Chan A. et al. Fractional exhaled nitric oxide as a predictor of response to inhaled corticosteroids in patients with non-specific respiratory symptoms and insignificant bronchodilator reversibility: a randomised controlled trial. Lancet Respir Med 2018; 6 (01) 29-39
  • 59 Amur S, LaVange L, Zineh I, Buckman-Garner S, Woodcock J. Biomarker qualification: toward a multiple stakeholder framework for biomarker development, regulatory acceptance, and utilization. Clin Pharmacol Ther 2015; 98 (01) 34-46
  • 60 Tiotiu A. Biomarkers in asthma: state of the art. Asthma Res Pract 2018; 4: 10
  • 61 Robinson D, Humbert M, Buhl R. et al. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy 2017; 47 (02) 161-175
  • 62 Pizzichini E, Pizzichini MM, Efthimiadis A. et al. Indices of airway inflammation in induced sputum: reproducibility and validity of cell and fluid-phase measurements. Am J Respir Crit Care Med 1996; 154 (2, Pt 1): 308-317
  • 63 Djukanović R, Sterk PJ, Fahy JV, Hargreave FE. Standardised methodology of sputum induction and processing. Eur Respir J Suppl 2002; 37: 1s-2s
  • 64 Tenero L, Zaffanello M, Piazza M, Piacentini G. Measuring airway inflammation in asthmatic children. Front Pediatr 2018; 6: 196
  • 65 Westerhof GA, Korevaar DA, Amelink M. et al. Biomarkers to identify sputum eosinophilia in different adult asthma phenotypes. Eur Respir J 2015; 46 (03) 688-696
  • 66 Lugogo N, Green CL, Agada N. et al. Obesity's effect on asthma extends to diagnostic criteria. J Allergy Clin Immunol 2018; 141 (03) 1096-1104
  • 67 Holguin F, Comhair SA, Hazen SL. et al. An association between L-arginine/asymmetric dimethyl arginine balance, obesity, and the age of asthma onset phenotype. Am J Respir Crit Care Med 2013; 187 (02) 153-159
  • 68 Payne DN, Adcock IM, Wilson NM, Oates T, Scallan M, Bush A. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am J Respir Crit Care Med 2001; 164 (8, Pt 1): 1376-1381
  • 69 McNicholl DM, Stevenson M, McGarvey LP, Heaney LG. The utility of fractional exhaled nitric oxide suppression in the identification of nonadherence in difficult asthma. Am J Respir Crit Care Med 2012; 186 (11) 1102-1108
  • 70 Kreindler JL, Watkins ML, Lettis S, Tal-Singer R, Locantore N. Effect of inhaled corticosteroids on blood eosinophil count in steroid-naïve patients with COPD. BMJ Open Respir Res 2016; 3 (01) e000151
  • 71 Oishi K, Hirano T, Suetake R. et al. A trial of oral corticosteroids for persistent systemic and airway inflammation in severe asthma. Immun Inflamm Dis 2017; 5 (03) 261-264
  • 72 Horváth I, Barnes PJ, Loukides S. et al. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 2017; 49 (04) 49
  • 73 Buchvald F, Baraldi E, Carraro S. et al. Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years. J Allergy Clin Immunol 2005; 115 (06) 1130-1136
  • 74 Dressel H, de la Motte D, Reichert J. et al. Exhaled nitric oxide: independent effects of atopy, smoking, respiratory tract infection, gender and height. Respir Med 2008; 102 (07) 962-969
  • 75 Byrnes CA, Dinarevic S, Busst CA, Shinebourne EA, Bush A. Effect of measurement conditions on measured levels of peak exhaled nitric oxide. Thorax 1997; 52 (08) 697-701
  • 76 Anderson WJ, Short PM, Williamson PA, Lipworth BJ. Inhaled corticosteroid dose response using domiciliary exhaled nitric oxide in persistent asthma: the FENOtype trial. Chest 2012; 142 (06) 1553-1561
  • 77 Haccuria A, Michils A, Michiels S, Van Muylem A. Exhaled nitric oxide: a biomarker integrating both lung function and airway inflammation changes. J Allergy Clin Immunol 2014; 134 (03) 554-559
  • 78 Karrasch S, Linde K, Rücker G. et al. Accuracy of FENO for diagnosing asthma: a systematic review. Thorax 2017; 72 (02) 109-116
  • 79 Busse WW, Wenzel SE, Casale TB. et al. Baseline FeNO as a prognostic biomarker for subsequent severe asthma exacerbations in patients with uncontrolled, moderate-to-severe asthma receiving placebo in the LIBERTY ASTHMA QUEST study: a post-hoc analysis. Lancet Respir Med 2021; 9 (10) 1165-1173
  • 80 Mansur AH, Srivastava S, Sahal A. Disconnect of type 2 biomarkers in severe asthma; dominated by FeNO as a predictor of exacerbations and periostin as predictor of reduced lung function. Respir Med 2018; 143: 31-38
  • 81 Lehtimäki L, Csonka P, Mäkinen E, Isojärvi J, Hovi S-L, Ahovuo-Saloranta A. Predictive value of exhaled nitric oxide in the management of asthma: a systematic review. Eur Respir J 2016; 48 (03) 706-714
  • 82 Malinovschi A, Fonseca JA, Jacinto T, Alving K, Janson C. Exhaled nitric oxide levels and blood eosinophil counts independently associate with wheeze and asthma events in National Health and Nutrition Examination Survey subjects. J Allergy Clin Immunol 2013; 132 (04) 821-7.e1, 5
  • 83 Buhl R, Korn S, Menzies-Gow A. et al. Prospective, single-arm, longitudinal study of biomarkers in real-world patients with severe asthma. J Allergy Clin Immunol Pract 2020; 8: 2630-2639.e6
  • 84 Mogensen I, Alving K, Jacinto T, Fonseca J, Janson C, Malinovschi A. Simultaneously elevated FeNO and blood eosinophils relate to asthma morbidity in asthmatics from NHANES 2007-12. Clin Exp Allergy 2018; 48 (08) 935-943
  • 85 Shim E, Lee E, Yang S-I. et al. The association of lung function, bronchial hyperresponsiveness, and exhaled nitric oxide differs between atopic and non-atopic asthma in children. Allergy Asthma Immunol Res 2015; 7 (04) 339-345
  • 86 Soto-Ramos M, Castro-Rodríguez JA, Hinojos-Gallardo LC, Hernández-Saldaña R, Cisneros-Castolo M, Carrillo-Rodríguez V. Fractional exhaled nitric oxide has a good correlation with asthma control and lung function in Latino children with asthma. J Asthma 2013; 50 (06) 590-594
  • 87 Coumou H, Westerhof GA, de Nijs SB, Zwinderman AH, Bel EH. Predictors of accelerated decline in lung function in adult-onset asthma. Eur Respir J 2018; 51 (02) 51
  • 88 Matsunaga K, Hirano T, Oka A, Ito K, Edakuni N. Persistently high exhaled nitric oxide and loss of lung function in controlled asthma. Allergol Int 2016; 65 (03) 266-271
  • 89 Nerpin E, Ferreira DS, Weyler J. et al. Bronchodilator response and lung function decline: associations with exhaled nitric oxide with regard to sex and smoking status. World Allergy Organ J 2021; 14 (05) 100544
  • 90 Petsky HL, Cates CJ, Kew KM, Chang AB. Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils): a systematic review and meta-analysis. Thorax 2018; 73 (12) 1110-1119
  • 91 Heaney LG, Busby J, Hanratty CE. et al; Investigators for the MRC Refractory Asthma Stratification Programme. Composite type-2 biomarker strategy versus a symptom-risk-based algorithm to adjust corticosteroid dose in patients with severe asthma: a multicentre, single-blind, parallel group, randomised controlled trial. Lancet Respir Med 2021; 9 (01) 57-68
  • 92 Hekking P-PW, Wener RR, Amelink M, Zwinderman AH, Bouvy ML, Bel EH. The prevalence of severe refractory asthma. J Allergy Clin Immunol 2015; 135: 896-902
  • 93 Bender B, Milgrom H, Rand C. Nonadherence in asthmatic patients: is there a solution to the problem?. Ann Allergy Asthma Immunol 1997; 79 (03) 177-185 , quiz 185–186
  • 94 d'Ancona G, Kavanagh J, Roxas C. et al. Adherence to corticosteroids and clinical outcomes in mepolizumab therapy for severe asthma. Eur Respir J 2020; 55 (05) 55
  • 95 Williams LK, Peterson EL, Wells K. et al. Quantifying the proportion of severe asthma exacerbations attributable to inhaled corticosteroid nonadherence. J Allergy Clin Immunol 2011; 128 (06) 1185-1191.e2
  • 96 Couillard S, Shrimanker R, Chaudhuri R. et al. Fractional exhaled nitric oxide nonsuppression identifies corticosteroid-resistant type 2 signaling in severe asthma. Am J Respir Crit Care Med 2021; 204 (06) 731-734
  • 97 Sullivan PW, Slejko JF, Ghushchyan VH. et al. The relationship between asthma, asthma control and economic outcomes in the United States. J Asthma 2014; 51 (07) 769-778
  • 98 Sullivan SD, Rasouliyan L, Russo PA, Kamath T, Chipps BE. TENOR Study Group. Extent, patterns, and burden of uncontrolled disease in severe or difficult-to-treat asthma. Allergy 2007; 62 (02) 126-133
  • 99 Busse WW. Biological treatments for severe asthma: a major advance in asthma care. Allergol Int 2019; 68 (02) 158-166
  • 100 National Institute for Health and Care Excellence (NICE). Omalizumab for treating severe persistent allergic asthma. National Institute for Health and Care Excellence; 2013
  • 101 Hanania NA, Wenzel S, Rosén K. et al. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med 2013; 187 (08) 804-811
  • 102 Casale TB, Luskin AT, Busse W. et al. Omalizumab effectiveness by biomarker status in patients with asthma: evidence from PROSPERO, a prospective real-world study. J Allergy Clin Immunol Pract 2019; 7 (01) 156-164.e1
  • 103 Pavord ID, Korn S, Howarth P. et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 2012; 380 (9842): 651-659
  • 104 Haldar P, Brightling CE, Hargadon B. et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 2009; 360 (10) 973-984
  • 105 Yancey SW, Keene ON, Albers FC. et al. Biomarkers for severe eosinophilic asthma. J Allergy Clin Immunol 2017; 140 (06) 1509-1518
  • 106 Shrimanker R, Keene O, Hynes G, Wenzel S, Yancey S, Pavord ID. Prognostic and predictive value of blood eosinophil count, fractional exhaled nitric oxide, and their combination in severe asthma: a post hoc analysis. Am J Respir Crit Care Med 2019; 200 (10) 1308-1312
  • 107 Hearn AP, Kavanagh J, d'Ancona G. et al. The relationship between FENO and effectiveness of mepolizumab and benralizumab in severe eosinophilic asthma. J Allergy Clin Immunol Pract 2021; 9: 2093-2096.e1
  • 108 Lambrecht BN, Hammad H, Fahy JV. The cytokines of asthma. Immunity 2019; 50 (04) 975-991
  • 109 Vatrella A, Fabozzi I, Calabrese C, Maselli R, Pelaia G. Dupilumab: a novel treatment for asthma. J Asthma Allergy 2014; 7: 123-130
  • 110 Wenzel S, Castro M, Corren J. et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet 2016; 388 (10039): 31-44
  • 111 Rabe KF, Nair P, Brusselle G. et al. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N Engl J Med 2018; 378 (26) 2475-2485
  • 112 Corren J, Parnes JR, Wang L. et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med 2017; 377 (10) 936-946
  • 113 Puig-Junoy J, Pascual-Argenté N. Socioeconomic costs of asthma in the European Union, United States and Canada: a systematic review. [in Spanish]. Rev Esp Salud Pública 2017; 91: 91
  • 114 National Institute for Health and Care Excellence (NICE). Diagnostics Guidance. Measuring Fractional Exhaled Nitric Oxide Concentration in Asthma: NIOX MINO, NIOX VERO and NObreath: National Institute for Health and Care Excellence (NICE); 2014
  • 115 LaForce C, Brooks E, Herje N, Dorinsky P, Rickard K. Impact of exhaled nitric oxide measurements on treatment decisions in an asthma specialty clinic. Ann Allergy Asthma Immunol 2014; 113 (06) 619-623
  • 116 Arnold RJ, Layton A, Massanari M. Cost impact of monitoring exhaled nitric oxide in asthma management. Allergy Asthma Proc 2018; 39 (05) 338-344
  • 117 Arnold RJ, Massanari M, Lee TA, Brooks E. A review of the utility and cost effectiveness of monitoring fractional exhaled nitric oxide (FeNO) in asthma management. Manag Care 2018; 27 (07) 34-41
  • 118 Honkoop PJ, Loijmans RJ, Termeer EH. et al; Asthma Control Cost-Utility Randomized Trial Evaluation (ACCURATE) Study Group. Symptom- and fraction of exhaled nitric oxide-driven strategies for asthma control: a cluster-randomized trial in primary care. J Allergy Clin Immunol 2015; 135 (03) 682-8.e11
  • 119 Brooks EA, Massanari M. Cost-effectiveness analysis of monitoring fractional exhaled nitric oxide (FeNO) in the management of asthma. Manag Care 2018; 27 (07) 42-48
  • 120 Price D, Berg J, Lindgren P. An economic evaluation of NIOX MINO airway inflammation monitor in the United Kingdom. Allergy 2009; 64 (03) 431-438
  • 121 Alving K. FeNO and suspected asthma: better to identify responsiveness to treatment than to label with a diagnosis. Lancet Respir Med 2018; 6 (01) 3-5
  • 122 Developing Lung Function Initiative (GLI) reference equations for exhaled and nasal nitric oxide (TF-2018–07). Accessed October 31, 2021 at: https://www.ersnet.org/research/task-forces
  • 123 Quanjer PH, Hall GL, Stanojevic S, Cole TJ, Stocks J. Global Lungs Initiative. Age- and height-based prediction bias in spirometry reference equations. Eur Respir J 2012; 40 (01) 190-197
  • 124 Heaney LG, Djukanovic R, Woodcock A. et al. Research in progress: Medical Research Council United Kingdom Refractory Asthma Stratification Programme (RASP-UK). Thorax 2016; 71 (02) 187-189
  • 125 Longstaff J, Chauhan M, De Vos R. et al. FeNO Testing for Asthma Diagnosis in Primary Care. European Respiratory Society; 2020
  • 126 Gratziou C, Lignos M, Dassiou M, Roussos C. Influence of atopy on exhaled nitric oxide in patients with stable asthma and rhinitis. Eur Respir J 1999; 14 (04) 897-901
  • 127 Galli J, Montuschi P, Passàli GC, Laruffa M, Parrilla C, Paludetti G. Exhaled nitric oxide measurement in patients affected by nasal polyposis. Otolaryngol Head Neck Surg 2012; 147 (02) 351-356