Klin Monbl Augenheilkd 2018; 235(07): 820-829
DOI: 10.1055/s-0042-122710
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Intraoperative optische Kohärenztomografie – eine aktuelle Übersicht klinischer Studien zur Anwendung im Vorder- und Hinterabschnitt

Intraoperative Optical Coherence Tomography – an Overview of Current Clinical Data for the Application in the Anterior and Posterior Segments
A. J. Augustin
Augenklinik, Klinikum Karlsruhe
› Author Affiliations
Further Information

Publication History

eingereicht 10 November 2016

akzeptiert 21 November 2016

Publication Date:
10 February 2017 (online)

Zusammenfassung

Die intraoperative optische Kohärenztomografie (iOCT) stellt einen weiteren, erheblichen Entwicklungsschritt in der ophthalmologischen Bildgebung dar – erstmals sind nun hochaufgelöste OCT-Darstellungen nicht nur prä- und postoperativ, sondern auch intraoperativ verfügbar. In den letzten Jahren wurden intraoperative OCT-Technologien intensiv erforscht und von ersten, handgehaltenen, über auf das Mikroskop aufmontierten Systemen bis hin zu vollständig in das Operationsmikroskop integrierten Systemen weiterentwickelt. Diese liefern uns während eines chirurgischen Eingriffs bei quasi unverändertem Arbeitsumfeld in Echtzeit 3-dimensionale OCT-Bilder und bieten uns so zusätzlich zur Mikroskopansicht weitere Informationen, wie z. B. zu Mikrostrukturen der Netzhaut oder der Kornea, die die Operationsstrategie bei Vorder- und Hinterabschnittseingriffen beeinflussen können. Wie jede neue Technologie weist auch die iOCT derzeit noch einige Limitationen auf, wie z. B. durch die Instrumente hervorgerufene Abschattungen des darunterliegenden Gewebes oder fehlende Tracking-Systeme. Daher ist zum derzeitigen Stand der Technologie noch etwas Geschick erforderlich, um chirurgische Manöver mit der iOCT in Echtzeit nachzuverfolgen. Dies wird durch zukünftige Weiterentwicklungen sicherlich behoben werden. Auch wenn die iOCT nicht für alle Prozeduren erforderlich ist, so kann es doch bei vielen chirurgischen Eingriffen am Vorder- bzw. Hinterabschnitt schon heute zu mehr Sicherheit und Kontrolle beitragen, wie zahlreiche Studien und Fallserien zeigen. Insbesondere bei der Entfernung vitreomakulärer Traktionen oder epiretinaler Membranen (ERM-Peeling) wie auch bei der Operation von Makulaforamina bietet die iOCT den Chirurgen eine deutliche Unterstützung, indem sie zur besseren Visualisierung transparenter Strukturen beiträgt, eine direkte Erfolgskontrolle ermöglicht und in bestimmten Fällen den Einsatz von Farbstoffen überflüssig macht. Auch bei lamellären hornhautchirurgischen Eingriffen sowie in der Glaukomchirurgie kann die iOCT zu mehr Kontrolle und Präzision beitragen. Zudem können mithilfe der iOCT neue wissenschaftliche Erkenntnisse zu verschiedenen Pathologien gewonnen, Auswirkungen chirurgischer Manöver auf die okuläre Strukturen besser evaluiert und somit chirurgische Manöver langfristig optimiert werden. Zur besseren Beurteilung des Nutzens der iOCT für verschiedene chirurgische Prozeduren werden zukünftig weitere prospektive Studien erforderlich sein.

Abstract

Intraoperative optical coherence tomography (iOCT) represents another milestone in ocular imaging technologies. Now, for the first time, high resolution OCT images are available not only pre- or postoperatively, but also intraoperatively. In recent years, there have been significant advances in iOCT technology – from hand-held probes and mounted systems towards iOCT systems which are fully integrated into the surgical microscope and which provide seamless integration into the workflow. These systems offer high-resolution, intraoperative OCT scans in real-time and provide additional information on microstructures of the retina or the cornea. These findings may even lead to a modification of surgical strategies. Like any other new technology, iOCT technology still has some limitations, such as shadowing from instruments and the lack of eye tracking systems. Therefore, the current state of iOCT technology still requires some skill to track surgical maneuvers in real time. Further research and development will help to solve these limitations in the future. However, even if not required for all surgical procedures, iOCT imaging can already improve safety and control in many surgical procedures on the anterior and posterior segments. This has already been shown in several studies and case series. Particularly in the surgery of vitreomacular traction, peeling of epiretinal membranes (ERM peeling) and macular hole surgery, iOCT offers significant added value. It improves the visualisation of transparent structures and helps to avoid the usage of dyes. In addition the success of the surgical maneuvers can be investigated intraoperatively. In lamellar keratoplasty and glaucoma surgery too, iOCT improves precision and safety. Moreover, iOCT technology may help to achieve further insight into ocular pathologies and a better understanding of the impact of surgical maneuvers on visual rehabilitation. Further prospective studies are however required to evaluate the usefulness of iOCT in various surgical procedures on both, the anterior and posterior segments.

 
  • Literatur

  • 1 Binder S. Intra-operative OCT devices for ophthalmic use: an overview. Spektrum Augenheilkd 2014; 28: 2-5
  • 2 Siebelmann S, Steven P, Cursiefen C. Intraoperative optical coherence tomography – ocular surgery on a higher level or just nice pictures?. JAMA Ophthalmol 2015; 133: 1133-1134
  • 3 Hüttmann G, Lankenau E, Schulz-Wackerbarth C. et al. [Optical coherence tomography: from retina imaging to intraoperative use – a review]. Klin Monatsbl Augenheilkd 2009; 226: 958-964
  • 4 Dayani PN, Maldonado R, Farsiu S. et al. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery. Retina 2009; 29: 1457-1468
  • 5 Ray R, Baranano DE, Fortun JA. et al. Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery. Ophthalmology 2011; 118: 2212-2217
  • 6 Ehlers JP, Tao YK, Srivastava SK. The value of intraoperative OCT imaging in vitreoretinal surgery. Curr Opin Ophthalmol 2014; 25: 221-227
  • 7 Stanzl B, Gagalick A, Brinkmann CK. et al. Intraoperative OCT in der ophthalmologischen Mikrochirurgie. Ophthalmologe 2016; 113: 435-442
  • 8 Jayadev C, Dabir S, Vinekar A. et al. Microscope-integrated optical coherence tomography: a new surgical tool in vitreoretinal surgery. Indian Ophthalmol 2015; 63: 399-403
  • 9 Ehlers JP, Goshe J, Dupps WJ. et al. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER Study RESCAN Results. JAMA Ophthalmol 2015; 133: 1124-1132
  • 10 Pfau M, Michels S, Binder S. et al. Clinical experience with the first commercially available intraoperative optical coherence tomography system. Ophthalmic Surg Lasers Imaging Retina 2015; 46: 1001-1008
  • 11 Ehlers JP, Dupps WJ, Kaiser PK. et al. The Prospective Intraoperative and Perioperative Ophthalmic ImagiNg with Optical CoherEncE tomogRaphy (PIONEER) study: 2-year results. Am J Ophthalmol 2014; 158: 999-1007
  • 12 Ehlers JP, Itoh Y, Xu LT. et al. Factors associated with persistent subfoveal fluid and complete macular hole closure in the PIONEER study. Invest Ophthalmol Vis Sci 2014; 56: 1141-1146
  • 13 Ehlers JP, Ohr MP, Kaiser PK. et al. Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography. Retina 2013; 33: 1428-1434
  • 14 Ehlers JP, Tam T, Kaiser PK. et al. Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome. Retina 2014; 34: 1341-1346
  • 15 Falkner-Radler C, Glittenberg C, Gabriel M. et al. Intrasurgical microscope-integrated spectral-domain optical coherence tomography-assisted membrane peeling. Retina 2015; 35: 2100-2106
  • 16 Hahn P, Carrasco-Zevallos O, Cunefare D. et al. Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device. Transl Vis Sci Technol 2015; 4: 1
  • 17 Hahn P, Migacz J, OʼDonnell R. et al. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device. Retina 2013; 33: 1328-1337
  • 18 Hattenbach LO, Framme C, Junker B. et al. [Intraoperative real-time OCT in macular surgery]. Ophthalmologe 2016; 113: 656-662
  • 19 Junker B, Maier M, Agostini H. et al. [Intraoperative optical coherence tomography in retinal detachment]. Ophthalmologe 2016; 113: 663-667
  • 20 Kunikata H, Nakazawa T. Intraoperative optical coherence tomography-assisted 27-gauge vitrectomy in eyes with vitreoretinal diseases. Case Rep Ophthalmol 2015; 6: 216-222
  • 21 Leisser C, Hackl C, Hirnschall N. et al. Visualizing macular structures during membrane peeling surgery with an intraoperative spectral-domain optical coherence tomography device. Ophthalmic Surg Lasers Imaging Retina 2016; 47: 328-332
  • 22 Riazi-Esfahani M, Khademi MR, Mazloumi M. et al. Macular surgery using intraoperative spectral domain optical coherence tomography. J Ophthalmic Vis Res 2015; 10: 309-315
  • 23 Smith AG, Cost BM, Ehlers JP. Intraoperative OCT-assisted subretinal perfluorocarbon liquid removal in the DISCOVER study. Ophthalmic Surg Lasers Imaging Retina 2015; 46: 964-966
  • 24 Tao YK, Ehlers JP, Toth CA. et al. Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery. Opt Lett 2010; 35: 3315-3317
  • 25 Toygar O, Riemann CD. Intraoperative optical coherence tomography in macula involving rhegmatogenous retinal detachment repair with pars plana vitrectomy and perfluoron. Eye (Lond) 2016; 30: 23-30
  • 26 Ehlers JP, Griffith JF, Srivastava SK. The intraoperative optical coherence tomography during vitreoretinal surgery for dense vitreous hemorrhage in the PIONEER study. Retina 2015; 35: 2537-2542
  • 27 Ehlers JP, Petkovsek DS, Yuan A. et al. Intrasurgical assessment of subretinal tPA injection for submacular hemorrhage in the PIONEER study utilizing intraoperative OCT. Ophthalmic Surg Lasers Imaging Retina 2015; 46: 327-332
  • 28 Sawaguchi S, Maruko I, Mikami Y. et al. Macular hole formation identified with intraoperative OCT during vitrectomy for vitreomacular traction syndrome. Retin Cases Brief Rep 2016; DOI: 10.1097/ICB.0000000000000377. [Epub ahead of print]
  • 29 Toygar O, Riemann CD. Intraoperative optical coherence tomography in macula involving rhegmatogenous retinal detachment repair with pars plana vitrectomy and perfluoron. Eye (Lond) 2016; 1: 23-30
  • 30 Ehlers JP, Han J, Petkovsek D. et al. Membrane Peeling induced retinal alterations on intraoperative OCT in vitreomacular interface disorders from the PIONEER study. Invest Ophthalmol Vis Sci 2015; 56: 7324-7330
  • 31 Siebelmann S, Bachmann B, Lappas A. et al. Intraoperative optische Kohärenztomographie bei hornhaut- und glaukomchirurgischen Eingriffen. Ophthalmologe 2016; 113: 646-650
  • 32 Kumar RS, Jariwala MU. V SA. et al. A pilot study on feasibility and effectiveness of intraoperative spectral-domain optical coherence tomography in glaucoma procedures. Transl Vis Sci Technol 2015; 4: 2 eCollection 2015
  • 33 Siebelmann S, Cursiefen C, Lappas A. et al. Intraoperative optical coherence tomography enables noncontact imaging during canaloplasty. J Glaucoma 2016; 25: 236-238
  • 34 Saad A, Guilbert E, Grise-Dulac A. et al. Intraoperative OCT-assisted DMEK: 14 consecutive cases. Cornea 2015; 34: 802-807
  • 35 Pasricha ND, Shieh C, Carrasco-Zevallos OM. et al. Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy. Cornea 2015; 34: 1606-1610
  • 36 Cost B, Goshe JM, Srivastava S. et al. Intraoperative optical coherence tomography-assisted descemet membrane endothelial keratoplasty in the DISCOVER study. Am J Ophthalmol 2015; 160: 430-437
  • 37 Juthani VV, Goshe JM, Srivastava SK. et al. Association between transient interface fluid on intraoperative OCT and textural interface opacity after DSAEK surgery in the PIONEER study. Cornea 2014; 33: 887-892
  • 38 Xu D, Dupps jr. WJ, Srivastava SK. et al. Automated volumetric analysis of interface fluid in descemet stripping automated endothelial keratoplasty using intraoperative optical coherence tomography. Invest Ophthalmol Vis Sci 2014; 55: 5610-5615
  • 39 Hallahan KM, Cost B, Goshe JM. et al. Intraoperative interface fluid dynamics and clinical outcomes for intraoperative optical coherence tomography-assisted Descemet stripping automated endothelial keratoplasty from the PIONEER Study. Am J Ophthalmol 2017; 173: 16-22
  • 40 Kobayashi A, Yokogawa H, Mori N. et al. Visualization of precut DSAEK and prestripped DMEK donor corneas by intraoperative optical coherence tomography using the RESCAN 700. BMC Ophthalmol 2016; 16: 135
  • 41 Au J, Goshe J, Dupps jr. WJ. et al. Intraoperative optical coherence tomography for enhanced depth visualization in deep anterior lamellar keratoplasty from the PIONEER study. Cornea 2015; 34: 1039-1043
  • 42 Sharma N, Aron N, Kakkar P. et al. Continuous intraoperative OCT guided management of post-deep anterior lamellar keratoplasty Descemetʼs membrane detachment. Saudi J Ophthalmol 2016; 30: 133-136
  • 43 Steven P, Le Blanc C, Lankenau E. et al. Optimising deep anterior lamellar keratoplasty (DALK) using intraoperative online optical coherence tomography (iOCT). Br J Ophthalmol 2014; 98: 900-904
  • 44 Das S, Kummelil MK, Kharbanda V. et al. Microscope integrated intraoperative spectral domain optical coherence tomography for cataract surgery: uses and applications. Curr Eye Res 2016; 4: 643-652
  • 45 Lytvynchuk LM, Glittenberg CG, Falkner-Radler CI. et al. Evaluation of intraocular lens position during phacoemulsification using intraoperative spectral-domain optical coherence tomography. J Cataract Refract Surg 2016; 42: 694-702
  • 46 Hirnschall N, Norrby S, Weber M. et al. Using continuous intraoperative optical coherence tomography measurement of the aphakic eye for intraocular power calculations. Br J Ophthalmol 2015; 99: 7-10
  • 47 Tripathy K, Chawla R, Kumawat B. et al. Intraoperative optical coherence tomography imaging and assessment of the macula during cataract surgery: a novel technique. Ophthalmic Surg Lasers Imaging Retina 2016; 47: 846-847
  • 48 Chavala SH, Farsiu S, Maldonado R. et al. Insights into advanced retinopathy of prematurity using handheld spectral domain optical coherence tomography imaging. Ophthalmology 2009; 116: 2448-2456
  • 49 Siebelmann S, Herrmann M, Dietlein T. et al. Intraoperative optical coherence tomography in children with anterior segment anomalies. Ophthalmology 2015; 122: 2582-2584
  • 50 Ehlers JP, Srivastava SK, Feiler D. et al. Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLoS One 2016; 9: e105224
  • 51 El-Haddad MT, Tao YK. Automated stereo vision instrument tracking for intraoperative OCT guided anterior segment ophthalmic surgical maneuvers. Biomed Opt Express 2015; 6: 3014-3031