Klin Monbl Augenheilkd 2017; 234(01): 77-89
DOI: 10.1055/s-0042-117280
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Refractive Lenticule Implantation for Correction of Ametropia: Case Reports and Literature Review

Lentikelimplantation zur Behandlung von Ametropien: Kasuistiken und Literaturübersicht
A. Lazaridis
Department of Ophthalmology, Philipps-Universität Marburg
,
A. Messerschmidt-Roth
Department of Ophthalmology, Philipps-Universität Marburg
,
W. Sekundo
Department of Ophthalmology, Philipps-Universität Marburg
,
S. Schulze
Department of Ophthalmology, Philipps-Universität Marburg
› Author Affiliations
Further Information

Publication History

received 25 July 2016

accepted 12 September 2016

Publication Date:
14 December 2016 (online)

Abstract

The ReLEx® technique allows correction of refractive errors through the creation and extraction of refractive stromal lenticules. Contrary to excimer laser corneal refractive procedures, where the stromal tissue is photoablated, the extracted lenticules obtained with ReLEx® can be preserved. Recent studies and case reports have described autologous re-implantation and allogeneic implantation of refractive lenticules into femtosecond-laser created stromal pockets in order to reverse the refractive outcome of a myopic corneal refractive procedure, correct hyperopia, aphakia, presbyopia and treat keratoconus. The use of stromal lenticules has also been described for therapeutic purposes, with an allogenic lenticule being transplanted under a LASIK flap in order to restore corneal volume and reduce the refractive error in a case of excessive stromal tissue removal after LASIK. This review summarises the results of the latest case reports and studies that describe the implantation of cryopreserved or fresh refractive stromal lenticules and discusses the feasibility, safety and refractive outcomes of the procedure, on the basis of published literature as well as our own experience.

Zusammenfassung

Die ReLEx®-Technik ermöglicht die Korrektur von Fehlsichtigkeiten durch das Erzeugen und die Entfernung eines refraktiven Lentikels aus dem Hornhautstroma. Im Gegensatz zu keratorefraktiven Excimer-Laser-Chirurgie, wobei das stromale Gewebe unwiderruflich abgetragen wird, können die refraktiven Lentikel nach ReLEx erhalten werden. Jüngste Studien und Fallberichte beschrieben die autologe Re-Implantation und allogene Implantation von refraktiven Lentikeln in durch den Femtosekundenlaser erzeugten Stromataschen, um das refraktive Ergebnis einer keratorefraktiven Chirurgie umzukehren, die Hyperopie, Aphakie und Presbyopie zu korrigieren und den Keratokonus zu behandeln. Die Verwendung von allogenen stromalen Lentikeln wurde auch für therapeutische Zwecke mittels einer Transplantation unter einen durch Femto-LASIK erzeugten Flap, beschrieben, um das Hornhautvolumen, im Fall einer übermäßigen Stromagewebeentfernung nach LASIK, wiederherzustellen und den refraktiven Fehler zu reduzieren. Diese Übersicht fasst die Ergebnisse der neuesten Fallberichte und Studien zusammen, die sich mit der Implantation von kryokonservierten oder frischen refraktiven Lentikeln beschäftigen, und bewertet die Wirksamkeit, Sicherheit und die refraktiven Ergebnisse des Verfahrens auf der Grundlage veröffentlichter Literatur sowie eigener Erfahrung.

 
  • References

  • 1 Marshall J, Sliney DH. Endoexcimer laser intraocular ablative photodecomposition. Am J Ophthalmol 1986; 101: 130-131
  • 2 Munnerlyn CR, Koons SJ, Marshall J. Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg 1988; 14: 46-52
  • 3 McDonald MB, Kaufman HE, Frantz JM. et al. Excimer laser ablation in a human eye. Arch Ophthalmol 1989; 107: 641-642
  • 4 McDonald MB, Frantz JM, Klyce SD. et al. Central photorefractive keratectomy for myopia. The blind eye study. Arch Ophthalmol 1990; 108: 799-808
  • 5 Pallikaris IG, Papatzanaki ME, Stathi EZ. et al. Laser in situ keratomileusis. Lasers Surg Med 1990; 10: 463-468
  • 6 Pallikaris IG, Siganos DS. Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia. J Refract Corneal Surg 1994; 10: 498-510
  • 7 Binder PS. One thousand consecutive IntraLase laser in situ keratomileusis flaps. J Cataract Refract Surg 2006; 32: 962-969
  • 8 Smadja D, Reggiani-Mello G, Santhiago MR. et al. Wavefront ablation profiles in refractive surgery: description, results, and limitations. J Refract Surg 2012; 28: 224-232
  • 9 Ahn H, Kim JK, Kim CK. et al. Comparison of laser in situ keratomileusis flaps created by 3 femtosecond lasers and a microkeratome. J Cataract Refract Surg 2011; 37: 349-357
  • 10 Ertan A, Colin J. Intracorneal rings for keratoconus and keratectesia. J Cataract Refract Surg 2007; 33: 1303-1314
  • 11 Gaster RN, Dumitrascu O, Rabinowitz YS. Penetrating keratoplasty using femtosecond laser-enabled keratoplasty with zig-zag incisions versus a mechanical trephine in patients with keratoconus. Br J Ophthalmol 2012; 96: 1195-1199
  • 12 Price jr. FW, Price MO, Grandin JC. et al. Deep anterior lamellar keratoplasty with femtosecond-laser zigzag incisions. J Cataract Refract Surg 2009; 35: 804-808
  • 13 Farid M, Steinert RF. Femtosecond laser-assisted corneal surgery. Curr Opin Ophthalmol 2010; 21: 288-292
  • 14 Vetter JM, Butsch C, Faust M. et al. Irregularity of the posterior corneal surface after curved interface femtosecond laser-assisted versus microkeratome-assisted descemet stripping automated endothelial keratoplasty. Cornea 2013; 32: 118-124
  • 15 Krueger RR, Juhasz T, Gualano A. et al. The picosecond laser for nonmechanical laser in situ keratomileusis. J Refract Surg 1998; 14: 467-469
  • 16 Ito M, Quantock AJ, Malhan S. et al. Picosecond laser in situ keratomileusis with a 1053-nm Nd : YLF laser. J Refract Surg 1996; 12: 721-728
  • 17 Kurtz RM, Horvath C, Liu HH. et al. Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes. J Refract Surg 1998; 14: 541-548
  • 18 Juhasz T, Loesel FH, Horvath C, Kurtz RM, Mourou G. Femtosecond Laser for Ultra-Accurate Surgery: Application to Corneal Surgery. In: Elsaesser T, Fujimoto JG, Wiersma DA, Zinth W. eds. Ultrafast Phenomena XI. Berlin, Heidelberg: Springer; 1998: 687-691
  • 19 Lubatschowski H, Maatz G, Heisterkamp A. et al. Application of ultrashort laser pulses for intrastromal refractive surgery. Graefes Arch Clin Exp Ophthalmol 2000; 238: 33-39
  • 20 Maatz G, Heisterkamp A, Lubatschowski H. et al. Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery. J Opt A Pure Appl Opt 2000; 2: 59-64
  • 21 Ratkay-Traub I, Ferincz IE, Juhasz T. et al. First clinical results with the femtosecond neodynium-glass laser in refractive surgery. J Refract Surg 2003; 19: 94-103
  • 22 Heisterkamp A, Mamom T, Kermani O. et al. Intrastromal refractive surgery with ultrashort laser pulses: in vivo study on the rabbit eye. Graefes Arch Clin Exp Ophthalmol 2003; 241: 511-517
  • 23 Sekundo W, Kunert K, Russmann C. et al. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results. J Cataract Refract Surg 2008; 34: 1513-1520
  • 24 Blum M, Kunert KS, Engelbrecht C. et al. Femtosecond lenticule extraction (FLEx) – Results after 12 months in myopic astigmatism. Klin Monatsbl Augenheilkd 2010; 227: 961-965
  • 25 Blum M, Kunert KS, Schröder M. et al. Femtosecond lenticule extraction for the correction of myopia: preliminary 6-month results. Graefes Arch Clin Exp Ophthalmol 2010; 248: 1019-1027
  • 26 Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol 2011; 95: 335-339
  • 27 Shah R, Shah S, Sengupta S. Results of small incision lenticule extraction: All-in-one femtosecond laser refractive surgery. J Cataract Refract Surg 2011; 37: 127-137
  • 28 Hjortdal JO, Vestergaard AH, Ivarsen A. et al. Predictors for the outcome of small-incision lenticule extraction for Myopia. J Refract Surg 2012; 28: 865-871
  • 29 Mohamed-Noriega K, Toh KP, Poh R. et al. Cornea lenticule viability and structural integrity after refractive lenticule extraction (ReLEx) and cryopreservation. Mol Vis 2011; 17: 3437-3449
  • 30 Angunawela RI, Riau AK, Chaurasia SS. et al. Refractive lenticule re-implantation after myopic ReLEx: a feasibility study of stromal restoration after refractive surgery in a rabbit model. Invest Ophthalmol Vis Sci 2012; 53: 4975-4985
  • 31 Liu H, Zhu W, Jiang AC. et al. Femtosecond laser lenticule transplantation in rabbit cornea: experimental study. J Refract Surg 2012; 28: 907-911
  • 32 Riau AK, Angunawela RI, Chaurasia SS. et al. Reversible femtosecond laser-assisted myopia correction: a non-human primate study of lenticule re-implantation after refractive lenticule extraction. PLoS One 2013; 8: e67058
  • 33 Lim CH, Riau AK, Lwin NC. et al. LASIK following small incision lenticule extraction (SMILE) lenticule re-implantation: a feasibility study of a novel method for treatment of presbyopia. PLoS One 2013; 8: e83046
  • 34 Liu R, Zhao J, Xu Y. et al. Femtosecond laser-assisted corneal small incision allogenic intrastromal lenticule implantation in monkeys: a pilot study. Invest Ophthalmol Vis Sci 2015; 56: 3715-3720
  • 35 Pradhan KR, Reinstein DZ, Carp GI. et al. Femtosecond laser-assisted keyhole endokeratophakia: correction of hyperopia by implantation of an allogeneic lenticule obtained by SMILE from a myopic donor. J Refract Surg 2013; 29: 777-782
  • 36 Ganesh S, Brar S, Rao PA. Cryopreservation of extracted corneal lenticules after small incision lenticule extraction for potential use in human subjects. Cornea 2014; 33: 1355-1362
  • 37 Sun L, Yao P, Li M. et al. The safety and predictability of implanting autologous lenticule obtained by SMILE for hyperopia. J Refract Surg 2015; 31: 374-379
  • 38 Ganesh S, Brar S. Femtosecond intrastromal lenticular implantation combined with accelerated collagen cross-linking for the treatment of keratoconus – initial clinical result in 6 eyes. Cornea 2015; 34: 1331-1339
  • 39 Lazaridis A, Reinstein DZ, Archer TJ. et al. Refractive Lenticule Transplantation for correction of iatrogenic hyperopia and high astigmatism after LASIK. J Refract Surg 2016; 32: 780-786
  • 40 Chung SH, Mazur E. Surgical applications of femtosecond laser. J Biophotonics 2009; 2: 557-572
  • 41 Soong HK, Malta JB. Femtosecond lasers in ophthalmology. Am J Ophthalmol 2009; 147: 189-197
  • 42 Kymionis GD, Kankariya VP, Plaka AD. et al. Femtosecond laser technology in corneal refractive surgery: a review. J Refract Surg 2012; 28: 912-920
  • 43 Dishler J, Ziebarth NM, Spooner GJR, Hjortdal J, Yoo SH. Evaluating Corneal Cut Surface Quality in SMILE. In: Sekundo W. ed. Small Incision Lenticule Extraction (SMILE): Principles, Techniques, Complication Management, and Future Concepts. Cham, Heidelberg, New York, Dordrecht, London: Springer International Publishing Switzerland; 2015
  • 44 Heichel J, Blum M, Duncker GI. et al. Surface quality of porcine corneal lenticules after Femtosecond Lenticule Extraction. Ophthalmic Res 2011; 46: 107-112
  • 45 Ziebarth NM, Lorenzo MA, Chow J. et al. Surface quality of human corneal lenticules after SMILE assessed using environmental scanning electron microscopy. J Refract Surg 2014; 30: 388-393
  • 46 Riau AK, Angunawela RI, Chaurasia SS. et al. Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction. J Cataract Refract Surg 2012; 38: 1467-1475
  • 47 Shah R, Shah S. Effect of scanning patterns on the results of femtosecond laser lenticule extraction refractive surgery. J Cataract Refract Surg 2011; 37: 1636-1647
  • 48 Brunette I, Le François M, Tremblay MC. et al. Corneal transplant tolerance of cryopreservation. Cornea 2001; 20: 590-596
  • 49 Halberstadt M, Böhnke M, Athmann S. et al. Cryopreservation of human donor corneas with dextran. Invest Ophthalmol Vis Sci 2003; 44: 5110-5115
  • 50 Armitage WJ. Cryopreservation for corneal storage. Dev Ophthalmol 2009; 43: 63-69
  • 51 Armitage WJ. Preservation of human cornea. Transfus Med Hemother 2011; 38: 143-147
  • 52 Chen W, Lin Y, Zhang X. et al. Comparison of fresh corneal tissue versus glycerin-cryopreserved corneal tissue in deep anterior lamellar keratoplasty. Invest Ophthalmol Vis Sci 2010; 51: 775-781
  • 53 Li J, Yu L, Deng Z. et al. Deep anterior lamellar keratoplasty using acellular corneal tissue for prevention of allograft rejection in high-risk corneas. Am J Ophthalmol 2011; 152: 762-770
  • 54 Barraquer JI. Oueratoplastia refractiva. Estudios Inform Oftal Inst Barraquer 1949; 10: 2-21
  • 55 Barraquer JI. The history and evolution of keratomileusis. Int Ophthalmol Clin 1996; 36: 1-7
  • 56 Barraquer JI. Queratomileusis y queratofakia. Bogotá: Instituto Barraquer de América; 1980: 342
  • 57 Ganesh S, Gupta R. Comparison of visual and refractive outcomes following femtosecond laser-assisted LASIK with SMILE in patients with myopia or myopic astigmatism. J Refract Surg 2014; 30: 590-596
  • 58 Wang D, Liu M, Chen Y. et al. Differences in the corneal biomechanical changes after SMILE and LASIK. J Refract Surg 2014; 30: 702-707
  • 59 Xu Y, Yang Y. Dry eye after small incision lenticule extraction and LASIK for myopia. J Refract Surg 2014; 30: 186-190
  • 60 Mohamed-Noriega K, Riau AK, Lwin NC. et al. Early corneal nerve damage and recovery following small incision lenticule extraction (SMILE) and laser in situ keratomileusis (LASIK). Invest Ophthalmol Vis Sci 2014; 55: 1823-1834
  • 61 Lazaridis A, Droutsas K, Sekundo W. Topographic analysis of the centration of the treatment zone after SMILE for myopia and comparison to FS-LASIK: subjective versus objective alignment. J Refract Surg 2014; 30: 680-686
  • 62 Dong Z, Zhou X, Wu J. et al. Small incision lenticule extraction (SMILE) and femtosecond laser LASIK: comparison of corneal wound healing and inflammation. Br J Ophthalmol 2014; 98: 263-269
  • 63 Liu H, Chen Y, Wang P. et al. Efficacy and safety of deep anterior lamellar keratoplasty vs. penetrating keratoplasty for keratoconus: a meta-analysis. PLoS One 2015; 10: e0113332
  • 64 Watson SL, Tuft SJ, Dart JK. Patterns of rejection after deep lamellar keratoplasty. Ophthalmology 2006; 113: 556-560
  • 65 Yam GH, Yusoff NZ, Goh TW. et al. Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci Rep 2016; 6: 26339
  • 66 Arlt E, Krall E, Moussa S. et al. Implantable inlay devices for presbyopia: the evidence to date. Clin Ophthalmol 2015; 9: 129-137
  • 67 Larrea X, De Courten C, Feingold V. et al. Oxygen and glucose distribution after intracorneal lens implantation. Optom Vis Sci 2007; 84: 1074-1081
  • 68 Sekundo W, Reinstein DZ, Blum M. Improved lenticule shape for hyperopic femtosecond lenticule extraction (ReLEx(®) FLEx): a pilot study. Lasers Med Sci 2016; 31: 659-664
  • 69 Cabrera Fernández D, Niazy AM, Kurtz RM. et al. Finite element analysis applied to cornea reshaping. J Biomed Opt 2005; 10: 064018
  • 70 Studer HP, Pradhan KR, Reinstein DZ. et al. Biomechanical modeling of femtosecond laser keyhole endokeratophakia surgery. J Refract Surg 2015; 31: 480-486
  • 71 Simonini I, Pandolfi A. Customized finite element modelling of the human cornea. PLoS One 2015; 10: e0130426