Klin Monbl Augenheilkd 2016; 233(03): 266-270
DOI: 10.1055/s-0042-102455
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Die Wirkung der VEGF-A-Antagonisten auf molekularer und zellulärer Ebene

About the Effects of VEGF-A Antagonists on Molecular and Cellular Level
O. Strauß
Experimentelle Ophthalmologie, Charité Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

eingereicht 06 January 2016

akzeptiert 02 February 2016

Publication Date:
24 March 2016 (online)

Zusammenfassung

Die Therapie der Neutralisierung des VEGF-A hat sich in der klinischen Routine zur Behandlung der feuchten altersbedingten Makuladegeneration etabliert, Indikationserweiterungen sind kontinuierlich hinzugekommen. Drei verschiedene Substanzen haben sich bewährt. In der Anwendung an dem sehr heterogenen Patientenkollektiv werden jedoch Unterschiede in der Effektivität, wie Nonresponder oder Rezidive, und individuelle Anwendungseffekte diskutiert. Hier könnten die unterschiedlichen molekularen Strukturen der 3 angewandten Substanzen von Bedeutung sein. Daher fasst dieser Artikel die Daten der unterschiedlichen molekularen und zellulären Effekte der 3 Substanzen zusammen und versucht, deren Relevanz zu bewerten. Neben Gemeinsamkeiten, wie vergleichbaren Affinitäten zum VEGF-A, ergeben sich Unterschiede, darunter die Fähigkeit, nicht nur VEGF-A zu neutralisieren, oder die Stabilität der VEGF-A-Molekülkomplexe. Auf der Ebene der molekularen Eigenschaften wie auch der zellulären Effekte besteht allerdings eine nur geringe Vergleichbarkeit der Studien, es existieren z. T. widersprüchliche Daten, oder die Daten sind nicht durch mehrere unabhängige Studien abgesichert. Daher sind auf dieser Basis keine Unterschiede in den klinischen Eigenschaften vorhersagbar.

Abstract

Anti-VEGF-A therapy is successfully established as a routine therapy to treat wet age-related macular degeneration. Indications have been extended to other retinal diseases. Three different substances have been demonstrated to be active. However, the efficacy of these substances is highly variable in heterogeneous groups of patients and may include non-responders and relapses, so that there may be very individual treatment effects. It is speculated that differences in the molecular properties or structures of the three substances might explain these observations. This article therefore summarises the recent publications on this topic and discusses their relevance. Apart from common features such as VEGF-A affinity, the substances exhibit differences, including the stability of the VEGF-A/molecule complexes and the ability to neutralise angiogenic molecules other than only VEGF-A. At the cellular level, a variety of different methods have been used and the results are often inconsistent. It is therefore not yet possible to predict the clinical properties of VEGF-A neutralising substances on the basis of their known molecular properties or cellular effects.

 
  • Literatur

  • 1 Lai K, Landa G. Current choice of treatments for neovascular AMD. Expert Rev Clin Pharmacol 2015; 8: 135-140
  • 2 Klettner A. VEGF-A and its inhibitors in age-related macular degeneration – pharmacokinetic differences and their retinal and systemic implications. J Biochem Pharmacol Res 2014; 2: 8-20
  • 3 Gardlik R, Fusekova I. Pharmacologic therapy for diabetic retinopathy. Semin Ophthalmol 2015; 30: 252-263
  • 4 Gerding H, Mones J, Tadayoni R et al. Ranibizumab in retinal vein occlusion: treatment recommendations by an expert panel. Br J Ophthalmol 2015; 99: 297-304
  • 5 Yeh S, Kim SJ, Ho AC et al. Therapies for macular edema associated with central retinal vein occlusion: a report by the American Academy of Ophthalmology. Ophthalmology 2015; 122: 769-778
  • 6 Kucukerdonmez C, Gelisken F, Yoeruek E et al. Switching intravitreal anti-VEGF treatment in neovascular age-related macular degeneration. Eur J Ophthalmol 2015; 25: 51-56
  • 7 Dedania VS, Grob S, Zhang K et al. Pharmacogenomics of response to anti-VEGF therapy in exudative age-related macular degeneration. Retina 2015; 35: 381-391
  • 8 Hu Z, Xie P, Ding Y et al. Association between variants A69S in ARMS2 gene and response to treatment of exudative AMD: a meta-analysis. Br J Ophthalmol 2015; 99: 593-598
  • 9 Campa C, Harding SP. Anti-VEGF compounds in the treatment of neovascular age related macular degeneration. Curr Drug Targets 2011; 12: 173-181
  • 10 Klettner A, Roider J. Treating age-related macular degeneration – interaction of VEGF-antagonists with their target. Mini Rev Med Chem 2009; 9: 1127-1135
  • 11 Lang GE, Lang GK, Deissler HL. [Basic in vitro studies on VEGF inhibition with aflibercept: similarities and differences to other VEGF-binding therapeutic proteins]. Klin Monatsbl Augenheilkd 2015; 232: 295-302
  • 12 Stewart MW. Aflibercept (VEGF-TRAP): the next anti-VEGF drug. Inflamm Allergy Drug Targets 2011; 10: 497-508
  • 13 Stewart EA, Samaranayake GJ, Browning AC et al. Comparison of choroidal and retinal endothelial cells: characteristics and response to VEGF isoforms and anti-VEGF treatments. Exp Eye Res 2011; 93: 761-766
  • 14 Srikantha N, Suhling K, Jackson T. Translational diffusion of ranibizumab and bevacizumab as measured by Fluorescence Recovery after Photobleaching (FRAP). Invest Ophthalmol Vis Sci 2012; 53: 6488
  • 15 Krohne TU, Liu Z, Holz FG et al. Intraocular pharmacokinetics of ranibizumab following a single intravitreal injection in humans. Am J Ophthalmol 2012; 154: 682-686 e682
  • 16 Saunders DJ, Muether PS, Fauser S. A model of the ocular pharmacokinetics involved in the therapy of neovascular age-related macular degeneration with ranibizumab. Br J Ophthalmol 2015; 99: 1554-1559
  • 17 Kanda A, Noda K, Saito W et al. Aflibercept Traps galectin-1, an angiogenic factor associated with diabetic retinopathy. Sci Rep 2015; 5: 17946
  • 18 Stewart MW, Rosenfeld PJ. Predicted biological activity of intravitreal VEGF Trap. Br J Ophthalmol 2008; 92: 667-668
  • 19 Platania CB, Di Paola L, Leggio GM et al. Molecular features of interaction between VEGFA and anti-angiogenic drugs used in retinal diseases: a computational approach. Front Pharmacol 2015; 6: 248
  • 20 Papadopoulos N, Martin J, Ruan Q et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 2012; 15: 171-185
  • 21 Yang J, Wang X, Fuh G et al. Comparison of binding characteristics and in vitro activities of three inhibitors of vascular endothelial growth factor A. Mol Pharm 2014; 11: 3421-3430
  • 22 Deissler H, Deissler H, Lang S et al. VEGF-induced effects on proliferation, migration and tight junctions are restored by ranibizumab (Lucentis) in microvascular retinal endothelial cells. Br J Ophthalmol 2008; 92: 839-843
  • 23 Deissler HL, Deissler H, Lang GE. Inhibition of vascular endothelial growth factor (VEGF) is sufficient to completely restore barrier malfunction induced by growth factors in microvascular retinal endothelial cells. Br J Ophthalmol 2011; 95: 1151-1156
  • 24 Deissler HL, Deissler H, Lang GE. Actions of bevacizumab and ranibizumab on microvascular retinal endothelial cells: similarities and differences. Br J Ophthalmol 2012; 96: 1023-1028
  • 25 Deissler HL, Deissler H, Lang GK et al. Ranibizumab efficiently blocks migration but not proliferation induced by growth factor combinations including VEGF in retinal endothelial cells. Graefes Arch Clin Exp Ophthalmol 2013; 251: 2345-2353
  • 26 Deissler HL, Lang GK, Lang GE. Capacity of aflibercept to counteract VEGF-stimulated abnormal behavior of retinal microvascular endothelial cells. Exp Eye Res 2014; 122: 20-31
  • 27 Deissler HL, Lang GK, Lang GE. Binding of VEGF-A is sufficient to abrogate the disturbing effects of VEGF-B together with VEGF-A on retinal endothelial cells. Graefes Arch Clin Exp Ophthalmol 2015; 253: 885-894
  • 28 Miura Y, Klettner A, Roider J. VEGF antagonists decrease barrier function of retinal pigment epithelium in vitro: possible participation of intracellular glutathione. Invest Ophthalmol Vis Sci 2010; 51: 4848-4855
  • 29 Ammar DA, Mandava N, Kahook MY. The effects of aflibercept on the viability and metabolism of ocular cells in vitro. Retina 2013; 33: 1056-1061
  • 30 Campa C. Effect of VEGF and anti-VEGF compounds on retinal pigment epithelium permeability: an in vitro study. Eur J Ophthalmol 2013; 23: 690-696
  • 31 Spitzer MS, Yoeruek E, Sierra A et al. Comparative antiproliferative and cytotoxic profile of bevacizumab (Avastin), pegaptanib (Macugen) and ranibizumab (Lucentis) on different ocular cells. Graefes Arch Clin Exp Ophthalmol 2007; 245: 1837-1842
  • 32 Peng S, Adelman RA, Rizzolo LJ. Minimal effects of VEGF and anti-VEGF drugs on the permeability or selectivity of RPE tight junctions. Invest Ophthalmol Vis Sci 2010; 51: 3216-3225
  • 33 Klettner A, Recber M, Roider J. Comparison of the efficacy of aflibercept, ranibizumab, and bevacizumab in an RPE/choroid organ culture. Graefes Arch Clin Exp Ophthalmol 2014; 252: 1593-1598
  • 34 Klettner A, Roider J. Comparison of bevacizumab, ranibizumab, and pegaptanib in vitro: efficiency and possible additional pathways. Invest Ophthalmol Vis Sci 2008; 49: 4523-4527
  • 35 Kaempf S, Johnen S, Salz AK et al. Effects of bevacizumab (Avastin) on retinal cells in organotypic culture. Invest Ophthalmol Vis Sci 2008; 49: 3164-3171
  • 36 Luthra S, Narayanan R, Marques LE et al. Evaluation of in vitro effects of bevacizumab (Avastin) on retinal pigment epithelial, neurosensory retinal, and microvascular endothelial cells. Retina 2006; 26: 512-518
  • 37 Malik D, Tarek M, Caceres del Carpio J et al. Safety profiles of anti-VEGF drugs: bevacizumab, ranibizumab, aflibercept and ziv-aflibercept on human retinal pigment epithelium cells in culture. Br J Ophthalmol 2014; 98 (Suppl. 01) i11-16
  • 38 Klettner A, Tahmaz N, Dithmer M et al. Effects of aflibercept on primary RPE cells: toxicity, wound healing, uptake and phagocytosis. Br J Ophthalmol 2014; 98: 1448-1452
  • 39 Januschowski K, Schnichels S, Hagemann U et al. Electrophysiological toxicity testing of VEGF Trap-Eye in an isolated perfused vertebrate retina organ culture model. Acta Ophthalmol 2014; 92: e305-311
  • 40 Luke M, Januschowski K, Luke J et al. The effects of ranibizumab (Lucentis) on retinal function in isolated perfused vertebrate retina. Br J Ophthalmol 2009; 93: 1396-1400
  • 41 Gaddini L, Varano M, Matteucci A et al. Müller glia activation by VEGF-antagonizing drugs: an in vitro study on rat primary retinal cultures. Exp Eye Res 2015; 145: 158-163
  • 42 Guo B, Wang Y, Hui Y et al. Effects of anti-VEGF agents on rat retinal Müller glial cells. Mol Vis 2010; 16: 793-799
  • 43 Luthra S, Sharma A, Dong J et al. Effect of bevacizumab (Avastin (TM)) on mitochondrial function of in vitro retinal pigment epithelial, neurosensory retinal and microvascular endothelial cells. Indian J Ophthalmol 2013; 61: 705-710
  • 44 Terasaki H, Sakamoto T, Shirasawa M et al. Penetration of bevacizumab and ranibizumab through retinal pigment epithelial layer in vitro. Retina 2015; 35: 1007-1015
  • 45 Klettner A, Mohle F, Roider J. Intracellular bevacizumab reduces phagocytotic uptake in RPE cells. Graefes Arch Clin Exp Ophthalmol 2010; 248: 819-824
  • 46 Chen CL, Liang CM, Chen YH et al. Bevacizumab modulates epithelial-to-mesenchymal transition in the retinal pigment epithelial cells via connective tissue growth factor up-regulation. Acta Ophthalmol 2012; 90: e389-398
  • 47 Deissler HL, Lang GK, Lang GE. Internalization of bevacizumab by retinal endothelial cells and its intracellular fate: Evidence for an involvement of the neonatal Fc receptor. Exp Eye Res 2016; 143: 49-59
  • 48 Julien S, Biesemeier A, Taubitz T et al. Different effects of intravitreally injected ranibizumab and aflibercept on retinal and choroidal tissues of monkey eyes. Br J Ophthalmol 2014; 98: 813-825
  • 49 Kim H, Fariss RN, Zhang C et al. Mapping of the neonatal Fc receptor in the rodent eye. Invest Ophthalmol Vis Sci 2008; 49: 2025-2029
  • 50 Tripathi RC, Borisuth NS, Tripathi BJ. Mapping of Fc gamma receptors in the human and porcine eye. Exp Eye Res 1991; 53: 647-656
  • 51 Van Bilsen K, van Hagen PM, Bastiaans J et al. The neonatal Fc receptor is expressed by human retinal pigment epithelial cells and is downregulated by tumour necrosis factor-alpha. Br J Ophthalmol 2011; 95: 864-868
  • 52 Miki K, Miki A, Matsuoka M et al. Effects of intraocular ranibizumab and bevacizumab in transgenic mice expressing human vascular endothelial growth factor. Ophthalmology 2009; 116: 1748-1754
  • 53 Nakao S, Arima M, Ishikawa K et al. Intravitreal anti-VEGF therapy blocks inflammatory cell infiltration and re-entry into the circulation in retinal angiogenesis. Invest Ophthalmol Vis Sci 2012; 53: 4323-4328
  • 54 Tokunaga CC, Mitton KP, Dailey W et al. Effects of anti-VEGF treatment on the recovery of the developing retina following oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 2014; 55: 1884-1892
  • 55 Miguel NC, Matsuda M, Portes AL et al. In vitro effects of bevacizumab treatment on newborn rat retinal cell proliferation, death, and differentiation. Invest Ophthalmol Vis Sci 2012; 53: 7904-7911
  • 56 Julien S, Biesemeier A, Schraermeyer U. In vitro induction of protein complexes between bevacizumab, VEGF-A(1)(6)(5) and heparin: explanation for deposits observed on endothelial veins in monkey eyes. Br J Ophthalmol 2013; 97: 511-517
  • 57 Heiduschka P, Fietz H, Hofmeister S et al. Penetration of bevacizumab through the retina after intravitreal injection in the monkey. Invest Ophthalmol Vis Sci 2007; 48: 2814-2823
  • 58 Julien S, Heiduschka P, Hofmeister S et al. Immunohistochemical localisation of intravitreally injected bevacizumab at the posterior pole of the primate eye: implication for the treatment of retinal vein occlusion. Br J Ophthalmol 2008; 92: 1424-1428
  • 59 Peters S, Heiduschka P, Julien S et al. Immunohistochemical localisation of intravitreally injected bevacizumab in the anterior chamber angle, iris and ciliary body of the primate eye. Br J Ophthalmol 2008; 92: 541-544
  • 60 Peters S, Heiduschka P, Julien S et al. Ultrastructural findings in the primate eye after intravitreal injection of bevacizumab. Am J Ophthalmol 2007; 143: 995-1002
  • 61 Schraermeyer U, Heiduschka P, Bartz-Schmidt KU. [Localisation of bevacizumab in the monkey retina after an intravitreal injection of Avastin]. Ophthalmologe 2009; 106: 619-624
  • 62 Schraermeyer U, Julien S. Formation of immune complexes and thrombotic microangiopathy after intravitreal injection of bevacizumab in the primate eye. Graef Arch Clin Exp 2012; 250: 1303-1313