Semin Respir Crit Care Med 2022; 43(02): 175-182
DOI: 10.1055/s-0041-1742105
Review Article

Pharmacokinetic/Pharmacodynamic Optimization of Hospital-Acquired and Ventilator-Associated Pneumonia: Challenges and Strategies

Yasmeen P. Abouelhassan
1   Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut
,
David Nicolau
1   Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut
2   Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut
› Institutsangaben

Abstract

Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) are correlated with high mortality rates worldwide. Thus, the administration of antibiotic therapy with appropriate dosing regimen is critical. An efficient antibiotic is needed to maintain an adequate concentration at the infection site, for a sufficient period of time, to achieve the best therapeutic outcome. It can, however, be challenging for antibiotics to penetrate the pulmonary system due to the complexity of its structure. Crossing the blood alveolar barrier is a difficult process determined by multiple factors that are either drug related or infection related. Thus, the understanding of pharmacokinetics/pharmacodynamics (PK/PD) of antibiotics identifies the optimum dosing regimens to achieve drug penetration into the epithelial lining fluid at adequate therapeutic concentrations. Critically ill patients in the ICU can express augmented renal clearance (ARC), characterized by enhanced renal function, or may have renal dysfunction necessitating supportive care such as continuous renal replacement therapy (CRRT). Both ARC and CRRT can alter drug elimination, thus affecting drug concentrations. PK of critically ill patients is less clear due to the multiple variabilities associated with their condition. Therefore, conventional dosing regimens often lead to therapeutic failure. Another major hurdle faced in optimizing treatment for HAP/VAP is the reduction of the in vitro potency. Therapeutic drug monitoring (TDM), if available, may allow health care providers to personalize treatment to maximize efficacy of the drug exposures while minimizing toxicity. TDM can be of significant importance in populations whom PK are less defined and for resistant infections to achieve the best therapeutic outcome.



Publikationsverlauf

Artikel online veröffentlicht:
27. Januar 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Kalil AC, Metersky ML, Klompas M. et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63 (05) e61-e111
  • 2 Govindan S, Hyzy RC. The 2016 guidelines for hospital-acquired and ventilator-associated pneumonia. A selection correction?. Am J Respir Crit Care Med 2016; 194 (06) 658-660
  • 3 Mandell LA, Rubinstein E. HAP/VAP: simpler may be better. Can J Infect Dis Med Microbiol 2008; 19 (01) 11
  • 4 Motos A, Kidd JM, Nicolau DP. Optimizing antibiotic administration for pneumonia. Clin Chest Med 2018; 39 (04) 837-852
  • 5 Drusano GL. Role of pharmacokinetics in the outcome of infections. Antimicrob Agents Chemother 1988; 32 (03) 289-297
  • 6 Drusano GL. Pharmacokinetics and pharmacodynamics of antimicrobials. Clin Infect Dis 2007; 45 (Suppl. 01) S89-S95
  • 7 Sy SK, Zhuang L, Derendorf H. Pharmacokinetics and pharmacodynamics in antibiotic dose optimization. Expert Opin Drug Metab Toxicol 2016; 12 (01) 93-114
  • 8 Derendorf H, Lesko LJ, Chaikin P. et al. Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol 2000; 40 (12 Pt 2): 1399-1418
  • 9 Meibohm B, Derendorf H. Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther 1997; 35 (10) 401-413
  • 10 Onufrak NJ, Forrest A, Gonzalez D. Pharmacokinetic and pharmacodynamic principles of anti-infective dosing. Clin Ther 2016; 38 (09) 1930-1947
  • 11 Peck RW, Shahin MH, Vinks AA. Precision dosing: the clinical pharmacology of Goldilocks. Clin Pharmacol Ther 2021; 109 (01) 11-14
  • 12 Gill CM, Aktaş E, Alfouzan W. et al; ERACE-PA Global Study Group. Elevated MICs of susceptible antipseudomonal cephalosporins in non-carbapenemase-producing, carbapenem-resistant Pseudomonas aeruginosa: implications for dose optimization. Antimicrob Agents Chemother 2021; 65 (11) e0120421
  • 13 Drusano GL. What are the properties that make an antibiotic acceptable for therapy of community-acquired pneumonia?. J Antimicrob Chemother 2011; 66 (Suppl. 03) iii61-iii67
  • 14 Dhanani J, Roberts JA, Chew M. et al. Antimicrobial chemotherapy and lung microdialysis: a review. Int J Antimicrob Agents 2010; 36 (06) 491-500
  • 15 Baldwin DR, Honeybourne D, Wise R. Pulmonary disposition of antimicrobial agents: in vivo observations and clinical relevance. Antimicrob Agents Chemother 1992; 36 (06) 1176-1180
  • 16 Zeitlinger M, Müller M, Joukhadar C. Lung microdialysis—a powerful tool for the determination of exogenous and endogenous compounds in the lower respiratory tract (mini-review). AAPS J 2005; 7 (03) E600-E608
  • 17 Nix DE. Intrapulmonary concentrations of antimicrobial agents. Infect Dis Clin North Am 1998; 12 (03) 631-646 , viii
  • 18 Honeybourne D. Antibiotic penetration in the respiratory tract and implications for the selection of antimicrobial therapy. Curr Opin Pulm Med 1997; 3 (02) 170-174
  • 19 Rodvold KA, George JM, Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet 2011; 50 (10) 637-664
  • 20 Kiem S, Schentag JJ. Interpretation of antibiotic concentration ratios measured in epithelial lining fluid. Antimicrob Agents Chemother 2008; 52 (01) 24-36
  • 21 Baldwin DR, Wise R, Andrews JM, Gill M, Honeybourne D. Comparative bronchoalveolar concentrations of ciprofloxacin and lomefloxacin following oral administration. Respir Med 1993; 87 (08) 595-601
  • 22 Panteix G, Harf R, Desnottes JF. et al. Accumulation of pefloxacin in the lower respiratory tract demonstrated by bronchoalveolar lavage. J Antimicrob Chemother 1994; 33 (05) 979-985
  • 23 Kikuchi J, Yamazaki K, Kikuchi E, Ishizaka A, Nishimura M. Pharmacokinetics of gatifloxacin after a single oral dose in healthy young adult subjects and adult patients with chronic bronchitis, with a comparison of drug concentrations obtained by bronchoscopic microsampling and bronchoalveolar lavage. Clin Ther 2007; 29 (01) 123-130
  • 24 Allegranzi B, Cazzadori A, Di Perri G. et al. Concentrations of single-dose meropenem (1 g iv) in bronchoalveolar lavage and epithelial lining fluid. J Antimicrob Chemother 2000; 46 (02) 319-322
  • 25 Baldwin DR, Andrews JM, Wise R, Honeybourne D. Bronchoalveolar distribution of cefuroxime axetil and in-vitro efficacy of observed concentrations against respiratory pathogens. J Antimicrob Chemother 1992; 30 (03) 377-385
  • 26 Meyer KC, Raghu G, Baughman RP. et al; American Thoracic Society Committee on BAL in Interstitial Lung Disease. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med 2012; 185 (09) 1004-1014
  • 27 Aulin LBS, Valitalo PA, Rizk ML. et al. Validation of a model predicting anti-infective lung penetration in the epithelial lining fluid of humans. Pharm Res 2018; 35 (02) 26
  • 28 Veiga RP, Paiva JA. Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Crit Care 2018; 22 (01) 233
  • 29 MacGowan A. Revisiting Beta-lactams—PK/PD improves dosing of old antibiotics. Curr Opin Pharmacol 2011; 11 (05) 470-476
  • 30 Williams P, Cotta MO, Roberts JA. Pharmacokinetics/pharmacodynamics of β-lactams and therapeutic drug monitoring: from theory to practical issues in the intensive care unit. Semin Respir Crit Care Med 2019; 40 (04) 476-487
  • 31 Kotapati S, Kuti JL, Nightingale CH, Nicolau DP. Role of pharmacodynamics in designing dosage regimens for beta-lactams. Conn Med 2003; 67 (05) 265-268
  • 32 Gillespie EL, Kuti JL, Nicolau DP. Pharmacodynamics of antimicrobials: treatment optimisation. Expert Opin Drug Metab Toxicol 2005; 1 (03) 351-361
  • 33 MacVane SH, Kuti JL, Nicolau DP. Prolonging β-lactam infusion: a review of the rationale and evidence, and guidance for implementation. Int J Antimicrob Agents 2014; 43 (02) 105-113
  • 34 Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy 2021; 41 (02) 220-233
  • 35 Vogelman BS, Craig WA. Postantibiotic effects. J Antimicrob Chemother 1985; 15 (suppl A): 37-46
  • 36 Vogelman B, Craig WA. Kinetics of antimicrobial activity. J Pediatr 1986; 108 (5 Pt 2): 835-840
  • 37 Turnidge JD. The pharmacodynamics of beta-lactams. Clin Infect Dis 1998; 27 (01) 10-22
  • 38 Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26 (01) 1-10 , quiz 11–12
  • 39 Cusumano JA, Klinker KP, Huttner A, Luther MK, Roberts JA, LaPlante KL. Towards precision medicine: therapeutic drug monitoring-guided dosing of vancomycin and β-lactam antibiotics to maximize effectiveness and minimize toxicity. Am J Health Syst Pharm 2020; 77 (14) 1104-1112
  • 40 Xiao AJ, Miller BW, Huntington JA, Nicolau DP. Ceftolozane/tazobactam pharmacokinetic/pharmacodynamic-derived dose justification for phase 3 studies in patients with nosocomial pneumonia. J Clin Pharmacol 2016; 56 (01) 56-66
  • 41 Caro L, Nicolau DP, De Waele JJ. et al. Lung penetration, bronchopulmonary pharmacokinetic/pharmacodynamic profile and safety of 3 g of ceftolozane/tazobactam administered to ventilated, critically ill patients with pneumonia. J Antimicrob Chemother 2020; 75 (06) 1546-1553
  • 42 Gatti M, Pea F. Continuous versus intermittent infusion of antibiotics in gram-negative multidrug-resistant infections. Curr Opin Infect Dis 2021; 34 (06) 737-747
  • 43 Benítez-Cano A, Luque S, Sorlí L. et al. Intrapulmonary concentrations of meropenem administered by continuous infusion in critically ill patients with nosocomial pneumonia: a randomized pharmacokinetic trial. Crit Care 2020; 24 (01) 55
  • 44 Lal A, Jaoude P, El-Solh AA. Prolonged versus intermittent infusion of β-lactams for the treatment of nosocomial pneumonia: a meta-analysis. Infect Chemother 2016; 48 (02) 81-90
  • 45 Dulhunty JM, Roberts JA, Davis JS. et al. Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis 2013; 56 (02) 236-244
  • 46 Ruiz J, Ferrada A, Salavert M. et al. Ceftolozane/tazobactam dosing requirements against Pseudomonas aeruginosa bacteremia. Dose Response 2020; 18 (01) 1559325819885790
  • 47 Tamma PD, Beisken S, Bergman Y. et al. Modifiable risk factors for the emergence of ceftolozane-tazobactam resistance. Clin Infect Dis 2021; Dec 6; 73 (11) e4599-e4606
  • 48 Tumbarello M, Raffaelli F, Giannella M. et al. Ceftazidime-avibactam use for Klebsiella pneumoniae carbapenemase-producing K. pneumoniae Iinfections: a retrospective observational multicenter study. Clin Infect Dis 2021; 73 (09) 1664-1676
  • 49 Goncette V, Layios N, Descy J, Frippiat F. Continuous infusion, therapeutic drug monitoring and outpatient parenteral antimicrobial therapy with ceftazidime/avibactam: a retrospective cohort study. J Glob Antimicrob Resist 2021; 26: 15-19
  • 50 Thalhammer F, Traunmüller F, El Menyawi I. et al. Continuous infusion versus intermittent administration of meropenem in critically ill patients. J Antimicrob Chemother 1999; 43 (04) 523-527
  • 51 Ibrahim MM, Tammam TF, Ebaed MED, Sarhan HA, Gad GF, Hussein AK. Extended infusion versus intermittent infusion of imipenem in the treatment of ventilator-associated pneumonia. Drug Des Devel Ther 2017; 11: 2677-2682
  • 52 Lorente L, Lorenzo L, Martín MM, Jiménez A, Mora ML. Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to gram-negative bacilli. Ann Pharmacother 2006; 40 (02) 219-223
  • 53 Drusano GL, Lodise TP, Melnick D. et al. Meropenem penetration into epithelial lining fluid in mice and humans and delineation of exposure targets. Antimicrob Agents Chemother 2011; 55 (07) 3406-3412
  • 54 Lodise TP, Sorgel F, Melnick D, Mason B, Kinzig M, Drusano GL. Penetration of meropenem into epithelial lining fluid of patients with ventilator-associated pneumonia. Antimicrob Agents Chemother 2011; 55 (04) 1606-1610
  • 55 Katsube T, Echols R, Arjona Ferreira JC, Krenz HK, Berg JK, Galloway C. Cefiderocol, a siderophore cephalosporin for gram-negative bacterial infections: pharmacokinetics and safety in subjects with renal impairment. J Clin Pharmacol 2017; 57 (05) 584-591
  • 56 Saisho Y, Katsube T, White S, Fukase H, Shimada J. Pharmacokinetics, safety, and tolerability of cefiderocol, a novel siderophore cephalosporin for gram-negative bacteria, in healthy subjects. Antimicrob Agents Chemother 2018; 62 (03) e02163-e17
  • 57 Katsube T, Saisho Y, Shimada J, Furuie H. Intrapulmonary pharmacokinetics of cefiderocol, a novel siderophore cephalosporin, in healthy adult subjects. J Antimicrob Chemother 2019; 74 (07) 1971-1974
  • 58 Katsube T, Nicolau DP, Rodvold KA. et al. Intrapulmonary pharmacokinetic profile of cefiderocol in mechanically ventilated patients with pneumonia. J Antimicrob Chemother 2021; 76 (11) 2902-2905
  • 59 Mulder MB, Eidelson SA, Sussman MS. et al. Risk factors and clinical outcomes associated with augmented renal clearance in trauma patients. J Surg Res 2019; 244: 477-483
  • 60 Baptista JP, Martins PJ, Marques M, Pimentel JM. Prevalence and risk factors for augmented renal clearance in a population of critically ill patients. J Intensive Care Med 2020; 35 (10) 1044-1052
  • 61 Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care 2013; 17 (01) R35
  • 62 Chen IH, Nicolau DP. Augmented renal clearance and how to augment antibiotic dosing. Antibiotics (Basel) 2020; 9 (07) 393
  • 63 Cook AM, Hatton-Kolpek J. Augmented renal clearance. Pharmacotherapy 2019; 39 (03) 346-354
  • 64 Huttner A, Von Dach E, Renzoni A. et al. Augmented renal clearance, low β-lactam concentrations and clinical outcomes in the critically ill: an observational prospective cohort study. Int J Antimicrob Agents 2015; 45 (04) 385-392
  • 65 Udy AA, Varghese JM, Altukroni M. et al. Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 2012; 142 (01) 30-39
  • 66 Claus BO, Hoste EA, Colpaert K, Robays H, Decruyenaere J, De Waele JJ. Augmented renal clearance is a common finding with worse clinical outcome in critically ill patients receiving antimicrobial therapy. J Crit Care 2013; 28 (05) 695-700
  • 67 Carrie C, Bentejac M, Cottenceau V. et al. Association between augmented renal clearance and clinical failure of antibiotic treatment in brain-injured patients with ventilator-acquired pneumonia: a preliminary study. Anaesth Crit Care Pain Med 2018; 37 (01) 35-41
  • 68 Carrié C, Chadefaux G, Sauvage N. et al. Increased β-Lactams dosing regimens improve clinical outcome in critically ill patients with augmented renal clearance treated for a first episode of hospital or ventilator-acquired pneumonia: a before and after study. Crit Care 2019; 23 (01) 379
  • 69 He J, Yang ZT, Qian X. et al. A higher dose of vancomycin is needed in critically ill patients with augmented renal clearance. Transl Androl Urol 2020; 9 (05) 2166-2171
  • 70 Béranger A, Benaboud S, Urien S. et al. Piperacillin population pharmacokinetics and dosing regimen optimization in critically ill children with normal and augmented renal clearance. Clin Pharmacokinet 2019; 58 (02) 223-233
  • 71 Udy AA, Dulhunty JM, Roberts JA. et al; BLING-II Investigators, ANZICS Clinical Trials Group. Association between augmented renal clearance and clinical outcomes in patients receiving β-lactam antibiotic therapy by continuous or intermittent infusion: a nested cohort study of the BLING-II randomised, placebo-controlled, clinical trial. Int J Antimicrob Agents 2017; 49 (05) 624-630
  • 72 Nicolau DP, De Waele J, Kuti JL. et al. Pharmacokinetics and pharmacodynamics of ceftolozane/tazobactam in critically ill patients with augmented renal clearance. Int J Antimicrob Agents 2021; 57 (04) 106299
  • 73 Chen LF, Losada MC, Du J, DeRyke CA, Patel M, Paschke A. Imipenem/Cilastatin/Relebactam Efficacy, Safety, and Probability of Target Attainment in Adults With Hospital-Acquired or Ventilator-Associated Bacterial Pneumonia and Renal Impairment or Augmented Renal Clearance. ECCMID e-learning. 2021 Poster #655
  • 74 Fratoni AJ, Nicolau DP, Kuti JL. Imipenem-Cilastatin-Relebactam (I/R) Pharmacokinetics (PK) in Critically Ill Patients with Augmented Renal Clearance (ARC). IDWeek 2021, September 29 to October 3 2021
  • 75 Tandukar S, Palevsky PM. Continuous renal replacement therapy: who, when, why, and how. Chest 2019; 155 (03) 626-638
  • 76 Trotman RL, Williamson JC, Shoemaker DM, Salzer WL. Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis 2005; 41 (08) 1159-1166
  • 77 Honore PM, Jacobs R, De Waele E, Spapen HD. Applying pharmacokinetic/pharmacodynamic principles for optimizing antimicrobial therapy during continuous renal replacement therapy. Anaesthesiol Intensive Ther 2017; 49 (05) 412-418
  • 78 Seyler L, Cotton F, Taccone FS. et al. Recommended β-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care 2011; 15 (03) R137
  • 79 Wilson FP, Bachhuber MA, Caroff D, Adler R, Fish D, Berns J. Low cefepime concentrations during high blood and dialysate flow continuous venovenous hemodialysis. Antimicrob Agents Chemother 2012; 56 (04) 2178-2180
  • 80 Jamal JA, Economou CJ, Lipman J, Roberts JA. Improving antibiotic dosing in special situations in the ICU: burns, renal replacement therapy and extracorporeal membrane oxygenation. Curr Opin Crit Care 2012; 18 (05) 460-471
  • 81 Economou CJP, Wong G, McWhinney B, Ungerer JPJ, Lipman J, Roberts JA. Impact of β-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy. Int J Antimicrob Agents 2017; 49 (05) 589-594
  • 82 Langgartner J, Vasold A, Glück T, Reng M, Kees F. Pharmacokinetics of meropenem during intermittent and continuous intravenous application in patients treated by continuous renal replacement therapy. Intensive Care Med 2008; 34 (06) 1091-1096
  • 83 Roger C, Cotta MO, Muller L. et al. Impact of renal replacement modalities on the clearance of piperacillin-tazobactam administered via continuous infusion in critically ill patients. Int J Antimicrob Agents 2017; 50 (02) 227-231
  • 84 Mariat C, Venet C, Jehl F. et al. Continuous infusion of ceftazidime in critically ill patients undergoing continuous venovenous haemodiafiltration: pharmacokinetic evaluation and dose recommendation. Crit Care 2006; 10 (01) R26
  • 85 Kuti JL, Nicolau DP. Optimal cefepime and meropenem dosing for ventilator-associated pneumonia patients with reduced renal function: an update to our clinical pathway. J Crit Care 2010; 25 (01) 155-156
  • 86 Nicasio AM, Eagye KJ, Nicolau DP. et al. Pharmacodynamic-based clinical pathway for empiric antibiotic choice in patients with ventilator-associated pneumonia. J Crit Care 2010; 25 (01) 69-77
  • 87 Fratoni AJ, Kuti JL, Nicolau DP. Optimised cefiderocol exposures in a successfully treated critically ill patient with polymicrobial Stenotrophomonas maltophilia bacteraemia and pneumonia receiving continuous venovenous haemodiafiltration. Int J Antimicrob Agents 2021; 58 (03) 106395
  • 88 Abdul-Aziz MH, Alffenaar JC, Bassetti M. et al; Infection Section of European Society of Intensive Care Medicine (ESICM), Pharmacokinetic/pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Group of International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT), Infections in the ICU and Sepsis Working Group of International Society of Antimicrobial Chemotherapy (ISAC). Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper. Intensive Care Med 2020; 46 (06) 1127-1153