Semin Respir Crit Care Med 2022; 43(02): 280-294
DOI: 10.1055/s-0041-1740605
Review Article

New Antibiotics for Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia

Matteo Bassetti
1   Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neurosciences, Genoa, Italy
2   Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
,
Alessandra Mularoni
3   Department of Infectious Diseases, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS), Palermo, Italy
,
Daniele Roberto Giacobbe
1   Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neurosciences, Genoa, Italy
2   Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
,
Nadia Castaldo
4   Division of Infectious Diseases, Department of Medicine, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
5   Department of Pulmonology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
,
Antonio Vena
1   Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neurosciences, Genoa, Italy
2   Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
› Author Affiliations

Abstract

Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) represent one of the most common hospital-acquired infections, carrying a significant morbidity and risk of mortality. Increasing antibiotic resistance among the common bacterial pathogens associated with HAP and VAP, especially Enterobacterales and nonfermenting gram-negative bacteria, has made the choice of empiric treatment of these infections increasingly challenging. Moreover, failure of initial empiric therapy to cover the causative agents associated with HAP and VAP has been associated with worse clinical outcomes. This review provides an overview of antibiotics newly approved or in development for the treatment of HAP and VAP. The approved antibiotics include ceftobiprole, ceftolozane–tazobactam, ceftazidime–avibactam, meropenem–vaborbactam, imipenem–relebactam, and cefiderocol. Their major advantages include their high activity against multidrug-resistant gram-negative pathogens.



Publication History

Article published online:
27 January 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Torres A, Niederman MS, Chastre J. et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J 2017; 50 (03) 1700582
  • 2 American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171 (04) 388-416
  • 3 Kalil AC, Metersky ML, Klompas M. et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63 (05) e61-e111
  • 4 Masterton RG, Galloway A, French G. et al. Guidelines for the management of hospital-acquired pneumonia in the UK: report of the working party on hospital-acquired pneumonia of the British Society for Antimicrobial Chemotherapy. J Antimicrob Chemother 2008; 62 (01) 5-34
  • 5 Bakhru RN, Wiebe DJ, McWilliams DJ, Spuhler VJ, Schweickert WD. An environmental scan for early mobilization practices in U.S. ICUs. Crit Care Med 2015; 43 (11) 2360-2369
  • 6 Koulenti D, Tsigou E, Rello J. Nosocomial pneumonia in 27 ICUs in Europe: perspectives from the EU-VAP/CAP study. Eur J Clin Microbiol Infect Dis 2017; 36 (11) 1999-2006
  • 7 Melsen WG, Rovers MM, Groenwold RH. et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect Dis 2013; 13 (08) 665-671
  • 8 Wilke M, Grube RF, Bodmann KF. Guideline-adherent initial intravenous antibiotic therapy for hospital-acquired/ventilator-associated pneumonia is clinically superior, saves lives and is cheaper than non guideline adherent therapy. Eur J Med Res 2011; 16 (07) 315-323
  • 9 Tseng CC, Liu SF, Wang CC. et al. Impact of clinical severity index, infective pathogens, and initial empiric antibiotic use on hospital mortality in patients with ventilator-associated pneumonia. Am J Infect Control 2012; 40 (07) 648-652
  • 10 Venditti M, Falcone M, Corrao S, Licata G, Serra P. Study Group of the Italian Society of Internal Medicine. Outcomes of patients hospitalized with community-acquired, health care-associated, and hospital-acquired pneumonia. Ann Intern Med 2009; 150 (01) 19-26
  • 11 Rolain JM, Abat C, Jimeno MT, Fournier PE, Raoult D. Do we need new antibiotics?. Clin Microbiol Infect 2016; 22 (05) 408-415
  • 12 Vincent JL, Rello J, Marshall J. et al; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009; 302 (21) 2323-2329
  • 13 Chung DR, Song JH, Kim SH. et al; Asian Network for Surveillance of Resistant Pathogens Study Group. High prevalence of multidrug-resistant nonfermenters in hospital-acquired pneumonia in Asia. Am J Respir Crit Care Med 2011; 184 (12) 1409-1417
  • 14 Delle Rose D, Pezzotti P, Fortunato E. et al. Clinical predictors and microbiology of ventilator-associated pneumonia in the intensive care unit: a retrospective analysis in six Italian hospitals. Eur J Clin Microbiol Infect Dis 2016; 35 (09) 1531-1539
  • 15 Piskin N, Aydemir H, Oztoprak N. et al. Inadequate treatment of ventilator-associated and hospital-acquired pneumonia: risk factors and impact on outcomes. BMC Infect Dis 2012; 12: 268
  • 16 Riyat MS. Hodgkin's disease in Kenya. Cancer 1992; 69 (04) 1047-1051
  • 17 Giacobbe DR, De Rosa FG, Del Bono V. et al. Ceftobiprole: drug evaluation and place in therapy. Expert Rev Anti Infect Ther 2019; 17 (09) 689-698
  • 18 Zbinden R, Pünter V, von Graevenitz A. In vitro activities of BAL9141, a novel broad-spectrum pyrrolidinone cephalosporin, against gram-negative nonfermenters. Antimicrob Agents Chemother 2002; 46 (03) 871-874
  • 19 Lovering AL, Gretes MC, Safadi SS. et al. Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J Biol Chem 2012; 287 (38) 32096-32102
  • 20 Falcó V, Burgos J, Almirante B. Ceftobiprole medocaril for the treatment of community-acquired pneumonia. Expert Opin Pharmacother 2018; 19 (13) 1503-1509
  • 21 Queenan AM, Shang W, Kania M, Page MG, Bush K. Interactions of ceftobiprole with beta-lactamases from molecular classes A to D. Antimicrob Agents Chemother 2007; 51 (09) 3089-3095
  • 22 Davies TA, Page MG, Shang W, Andrew T, Kania M, Bush K. Binding of ceftobiprole and comparators to the penicillin-binding proteins of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae . Antimicrob Agents Chemother 2007; 51 (07) 2621-2624
  • 23 Cillóniz C, Dominedò C, Garcia-Vidal C, Torres A. Ceftobiprole for the treatment of pneumonia. Rev Esp Quimioter 2019; 32 (Suppl. 03) 17-23
  • 24 Torres A, Mouton JW, Pea F. Pharmacokinetics and dosing of ceftobiprole medocaril for the treatment of hospital- and community-acquired pneumonia in different patient populations. Clin Pharmacokinet 2016; 55 (12) 1507-1520
  • 25 Lupia T, Pallotto C, Corcione S, Boglione L, De Rosa FG. Ceftobiprole perspective: current and potential future indications. Antibiotics (Basel) 2021; 10 (02) 170
  • 26 Medicines and Healthcare Products Regulatory Agency. Basilea Medical Ltd. Public assessment report, Zevtera 500 mg powder for concentrate for solution for infusion. Accessed October 30, 2021 at: https://globenewswire.com/news-release/2018/03/06/1415442/0/en/Basilea-reports-launch-of-antibiotic-Zevtera-ceftobiprole-in-Argentina-by-Grupo-Biotoscana.html
  • 27 Bäckström T, Panagiotidis G, Beck O. et al. Effect of ceftobiprole on the normal human intestinal microflora. Int J Antimicrob Agents 2010; 36 (06) 537-541
  • 28 Awad SS, Rodriguez AH, Chuang YC. et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis 2014; 59 (01) 51-61
  • 29 Nicholson SC, Welte T, File Jr TM. et al. A randomised, double-blind trial comparing ceftobiprole medocaril with ceftriaxone with or without linezolid for the treatment of patients with community-acquired pneumonia requiring hospitalisation. Int J Antimicrob Agents 2012; 39 (03) 240-246
  • 30 van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis 2016; 63 (02) 234-241
  • 31 Cabot G, Bruchmann S, Mulet X. et al. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother 2014; 58 (06) 3091-3099
  • 32 Giacobbe DR, Bassetti M, De Rosa FG. et al; ISGRI-SITA (Italian Study Group on Resistant Infections of the Società Italiana Terapia Antinfettiva). Ceftolozane/tazobactam: place in therapy. Expert Rev Anti Infect Ther 2018; 16 (04) 307-320
  • 33 Rodríguez-Pardo D, Escolà-Vergé L, Sellarès-Nadal J, Corona PS, Almirante B, Pigrau C. Periprosthetic joint infection prophylaxis in the elderly after hip hemiarthroplasty in proximal femur fractures: insights and challenges. Antibiotics (Basel) 2021; 10 (04) 429
  • 34 Livermore DM, Mushtaq S, Meunier D. et al; BSAC Resistance Surveillance Standing Committee. Activity of ceftolozane/tazobactam against surveillance and ‘problem’ Enterobacteriaceae, Pseudomonas aeruginosa and non-fermenters from the British Isles. J Antimicrob Chemother 2017; 72 (08) 2278-2289
  • 35 Goodlet KJ, Nicolau DP, Nailor MD. In vitro comparison of ceftolozane-tazobactam to traditional beta-lactams and ceftolozane-tazobactam as an alternative to combination antimicrobial therapy for Pseudomonas aeruginosa . Antimicrob Agents Chemother 2017; 61 (12) e01350-17
  • 36 Takeda S, Nakai T, Wakai Y, Ikeda F, Hatano K. In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa . Antimicrob Agents Chemother 2007; 51 (03) 826-830
  • 37 Shortridge D, Pfaller MA, Castanheira M, Flamm RK. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2013-2016) as part of the surveillance program: program to assess ceftolozane-tazobactam susceptibility. Microb Drug Resist 2018; 24 (05) 563-577
  • 38 Lob SH, Hoban DJ, Young K, Motyl MR, Sahm DF. Activity of ceftolozane-tazobactam and comparators against Pseudomonas aeruginosa from patients in different risk strata - SMART United States 2016-2017. J Glob Antimicrob Resist 2020; 20: 209-213
  • 39 Sutherland CA, Nicolau DP. Potency of parenteral antimicrobials including ceftolozane/tazobactam against nosocomial respiratory tract pathogens: considerations for empiric and directed therapy. J Thorac Dis 2017; 9 (01) 214-221
  • 40 Carvalhaes CG, Castanheira M, Sader HS, Flamm RK, Shortridge D. Antimicrobial activity of ceftolozane-tazobactam tested against gram-negative contemporary (2015-2017) isolates from hospitalized patients with pneumonia in US medical centers. Diagn Microbiol Infect Dis 2019; 94 (01) 93-102
  • 41 Castanheira M, Duncan LR, Mendes RE, Sader HS, Shortridge D. Activity of ceftolozane-tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae isolates collected from respiratory tract specimens of hospitalized patients in the United States during 2013 to 2015. Antimicrob Agents Chemother 2018; 62 (03) e02125-17
  • 42 Castanheira M, Doyle TB, Mendes RE, Sader HS. Comparative activities of ceftazidime-avibactam and ceftolozane-tazobactam against Enterobacteriaceae isolates producing extended-spectrum β-lactamases from U.S. hospitals. Antimicrob Agents Chemother 2019; 63 (07) e00160-19
  • 43 Pfaller MA, Bassetti M, Duncan LR, Castanheira M. Ceftolozane/tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing urinary tract and intraabdominal infections in Europe: report from an antimicrobial surveillance programme (2012-15). J Antimicrob Chemother 2017; 72 (05) 1386-1395
  • 44 Farrell DJ, Sader HS, Flamm RK, Jones RN. Ceftolozane/tazobactam activity tested against Gram-negative bacterial isolates from hospitalised patients with pneumonia in US and European medical centres (2012). Int J Antimicrob Agents 2014; 43 (06) 533-539
  • 45 Chandorkar G, Huntington JA, Gotfried MH, Rodvold KA, Umeh O. Intrapulmonary penetration of ceftolozane/tazobactam and piperacillin/tazobactam in healthy adult subjects. J Antimicrob Chemother 2012; 67 (10) 2463-2469
  • 46 Petraitis V, Petraitiene R, Naing E. et al. Ceftolozane-tazobactam in the treatment of experimental Pseudomonas aeruginosa pneumonia in persistently neutropenic rabbits: impact on strains with genetically defined mechanisms of resistance. Antimicrob Agents Chemother 2019; 63 (09) e00344-19
  • 47 Zerbaxa EMA. Summary of product characteristics. Accessed October 30, 2021 at: https://www.ema.europa.eu/en/documents/product-information/zerbaxa-epar-product-information_en.pdf
  • 48 Kollef MH, Nováček M, Kivistik Ü. et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): a randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis 2019; 19 (12) 1299-1311
  • 49 Puzniak L, Dillon R, Palmer T, Collings H, Enstone A. Systematic literature review of real-world evidence of ceftolozane/tazobactam for the treatment of respiratory infections. Infect Dis Ther 2021; 10 (03) 1227-1252
  • 50 Pogue JM, Kaye KS, Veve MP. et al. Ceftolozane/Tazobactam vs polymyxin or aminoglycoside-based regimens for the treatment of drug-resistant Pseudomonas aeruginosa . Clin Infect Dis 2020; 71 (02) 304-310
  • 51 Bassetti M, Castaldo N, Cattelan A. et al; CEFTABUSE Study Group. Ceftolozane/tazobactam for the treatment of serious Pseudomonas aeruginosa infections: a multicentre nationwide clinical experience. Int J Antimicrob Agents 2019; 53 (04) 408-415
  • 52 Bassetti M, Vena A, Giacobbe DR. et al; CEFTABUSE Study Group. Ceftolozane/Tazobactam for treatment of severe ESBL-producing Enterobacterales infections: a multicenter nationwide clinical experience (CEFTABUSE II Study). Open Forum Infect Dis 2020; 7 (05) a139
  • 53 Novelli A, Del Giacomo P, Rossolini GM, Tumbarello M. Meropenem/vaborbactam: a next generation β-lactam β-lactamase inhibitor combination. Expert Rev Anti Infect Ther 2020; 18 (07) 643-655
  • 54 Bassetti M, Vena A, Sepulcri C, Giacobbe DR, Peghin M. Treatment of bloodstream infections due to gram-negative bacteria with difficult-to-treat resistance. Antibiotics (Basel) 2020; 9 (09) E632
  • 55 Hecker SJ, Reddy KR, Totrov M. et al. Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class a serine carbapenemases. J Med Chem 2015; 58 (09) 3682-3692
  • 56 Lomovskaya O, Sun D, Rubio-Aparicio D. et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob Agents Chemother 2017; 61 (11) e01443-17
  • 57 Shorttidge D, Deshpande LM, Duncan LR, Streit JM, Castanheira M. 1590. Activity of meropenem-vaborbactam and single-agent comparators against Enterobacterales isolates including KPC-producing isolates, from European patients hospitalized with pneumonia including ventilator-associated pneumonia (2014–2019). Open Forum Infect Dis 2020; 7 (Suppl. 01) S792-S792
  • 58 Carvalhaes CG, Shortridge D, Sader HS, Castanheira M. Activity of meropenem-vaborbactam against bacterial isolates causing pneumonia in patients in U.S. hospitals during 2014 to 2018. Antimicrob Agents Chemother 2020; 64 (03) e02177-19
  • 59 Rubino CM, Bhavnani SM, Loutit JS. et al. Phase 1 study of the safety, tolerability, and pharmacokinetics of vaborbactam and meropenem alone and in combination following single and multiple doses in healthy adult subjects. Antimicrob Agents Chemother 2018; 62 (04) e02228-17
  • 60 Griffith DC, Loutit JS, Morgan EE, Durso S, Dudley MN. Phase 1 study of the safety, tolerability, and pharmacokinetics of the β-lactamase inhibitor vaborbactam (RPX7009) in healthy adult subjects. Antimicrob Agents Chemother 2016; 60 (10) 6326-6332
  • 61 Wenzler E, Gotfried MH, Loutit JS. et al. Meropenem-RPX7009 concentrations in plasma, epithelial lining fluid, and alveolar macrophages of healthy adult subjects. Antimicrob Agents Chemother 2015; 59 (12) 7232-7239
  • 62 Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G. et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect Dis Ther 2018; 7 (04) 439-455
  • 63 Alosaimy S, Jorgensen SCJ, Lagnf AM. et al. Real-world multicenter analysis of clinical outcomes and safety of meropenem-vaborbactam in patients treated for serious gram-negative bacterial infections. Open Forum Infect Dis 2020; 7 (03) a051
  • 64 Shields RK, McCreary EK, Marini RV. et al. Real-world experience with meropenem–vaborbactam (M/V) for treatment of carbapenem-resistant Enterobacteriaceae (CRE) infections. Open Forum Infect Dis 2247;6(Suppl 2):S768–S768
  • 65 Ackley R, Roshdy D, Meredith J. et al. Meropenem-vaborbactam versus ceftazidime-avibactam for treatment of carbapenem-resistant Enterobacteriaceae infections. Antimicrob Agents Chemother 2020; 64 (05) e02313-19
  • 66 Olsen I. New promising β-lactamase inhibitors for clinical use. Eur J Clin Microbiol Infect Dis 2015; 34 (07) 1303-1308
  • 67 Haidar G, Clancy CJ, Chen L. et al. Identifying spectra of activity and therapeutic niches for ceftazidime-avibactam and imipenem-relebactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother 2017; 61 (09) e00642-17
  • 68 Barnes MD, Bethel CR, Alsop J. et al. Inactivation of the Pseudomonas-derived cephalosporinase-3 (PDC-3) by relebactam. Antimicrob Agents Chemother 2018; 62 (05) e02406-17
  • 69 Lob SH, Hackel MA, Kazmierczak KM. et al. In vitro activity of imipenem-relebactam against gram-negative ESKAPE pathogens isolated by clinical laboratories in the United States in 2015 (results from the SMART Global Surveillance Program). Antimicrob Agents Chemother 2017; 61 (06) e02209-16
  • 70 Goldstein EJC, Citron DM, Tyrrell KL, Leoncio E, Merriam CV. Comparative In vitro activities of relebactam, imipenem, the combination of the two, and six comparator antimicrobial agents against 432 strains of anaerobic organisms, including imipenem-resistant strains. Antimicrob Agents Chemother 2018; 62 (02) e01992-17
  • 71 Zhanel GG, Lawrence CK, Adam H. et al. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs 2018; 78 (01) 65-98
  • 72 Papp-Wallace KM, Barnes MD, Alsop J. et al. Relebactam is a potent inhibitor of the KPC-2 β-lactamase and restores imipenem susceptibility in KPC-producing Enterobacteriaceae. Antimicrob Agents Chemother 2018; 62 (06) e00174-18
  • 73 Canver MC, Satlin MJ, Westblade LF. et al. Activity of imipenem-relebactam and comparator agents against genetically characterized isolates of carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother 2019; 63 (09) e00672-19
  • 74 Sellarès-Nadal J, Eremiev S, Burgos J, Almirante B. An overview of cilastatin + imipenem + relebactam as a therapeutic option for hospital-acquired and ventilator-associated bacterial pneumonia: evidence to date. Expert Opin Pharmacother 2021; 22 (12) 1521-1531
  • 75 Asempa TE, Nicolau DP, Kuti JL. In vitro activity of imipenem-relebactam alone or in combination with amikacin or colistin against Pseudomonas aeruginosa . Antimicrob Agents Chemother 2019; 63 (09) e00997-19
  • 76 EMA. Merck Sharp & Dohme. Recarbrio: EU summary of product characteristics. Accessed October 27, 2021 at: http://www.ema.europa.eu
  • 77 Rizk ML, Rhee EG, Jumes PA. et al. Intrapulmonary pharmacokinetics of relebactam, a novel β-lactamase inhibitor, dosed in combination with imipenem-cilastatin in healthy subjects. Antimicrob Agents Chemother 2018; 62 (03) e01411-17
  • 78 Karaiskos I, Galani I, Souli M, Giamarellou H. Novel β-lactam-β-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant gram-negative pathogens. Expert Opin Drug Metab Toxicol 2019; 15 (02) 133-149
  • 79 Motsch J, Murta de Oliveira C, Stus V. et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin Infect Dis 2020; 70 (09) 1799-1808
  • 80 Titov I, Wunderink RG, Roquilly A. et al. A randomized, double-blind, multicenter trial comparing efficacy and safety of imipenem/cilastatin/relebactam versus piperacillin/tazobactam in adults with hospital-acquired or ventilator-associated bacterial pneumonia (RESTORE-IMI 2 Study). Clin Infect Dis 2021; 73 (11) e4539-e4548
  • 81 Aoki T, Yoshizawa H, Yamawaki K. et al. Cefiderocol (S-649266), a new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other gram-negative pathogens including multi-drug resistant bacteria: structure activity relationship. Eur J Med Chem 2018; 155: 847-868
  • 82 Ito A, Nishikawa T, Matsumoto S. et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa . Antimicrob Agents Chemother 2016; 60 (12) 7396-7401
  • 83 Sato T, Yamawaki K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin Infect Dis 2019; 69 (Suppl. 07) S538-S543
  • 84 Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 Study). Antimicrob Agents Chemother 2017; 61 (09) e00093-17
  • 85 Karlowsky JA, Hackel MA, Tsuji M, Yamano Y, Echols R, Sahm DF. In vitro activity of cefiderocol, a siderophore cephalosporin, against gram-negative bacilli isolated by clinical laboratories in North America and Europe in 2015-2016: SIDERO-WT-2015. Int J Antimicrob Agents 2019; 53 (04) 456-466
  • 86 Yamano Y. In vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria. Clin Infect Dis 2019; 69 (Suppl. 07) S544-S551
  • 87 Jacobs MR, Abdelhamed AM, Good CE. et al. ARGONAUT-I: activity of cefiderocol (S-649266), a siderophore cephalosporin, against gram-negative bacteria, including carbapenem-resistant nonfermenters and Enterobacteriaceae with defined extended-spectrum β-lactamases and carbapenemases. Antimicrob Agents Chemother 2018; 63 (01) e01801-18
  • 88 Giacobbe DR, Ciacco E, Girmenia C. et al; ISGRI-SITA (Italian Study Group on Resistant Infections of the Italian Society of Anti-infective Therapy). Evaluating cefiderocol in the treatment of multidrug-resistant gram-negative bacilli: a review of the emerging data. Infect Drug Resist 2020; 13: 4697-4711
  • 89 Katsube T, Saisho Y, Shimada J, Furuie H. Intrapulmonary pharmacokinetics of cefiderocol, a novel siderophore cephalosporin, in healthy adult subjects. J Antimicrob Chemother 2019; 74 (07) 1971-1974
  • 90 Wunderink RG, Matsunaga Y, Ariyasu M. et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis 2021; 21 (02) 213-225
  • 91 Fetcroja EMA. Cefiderocol prescribing informations. 2020. Accessed October 30, 2021 at: https://www.ema.europa.eu/en/documents/product-information/fetcroja-epar-product-information_it.pdf
  • 92 Bassetti M, Echols R, Matsunaga Y. et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis 2021; 21 (02) 226-240
  • 93 Shionogi. Fetroja (cefiderocol). Prescribing information 2019
  • 94 Trecarichi EM, Quirino A, Scaglione V. et al; IMAGES Group. Successful treatment with cefiderocol for compassionate use in a critically ill patient with XDR Acinetobacter baumannii and KPC-producing Klebsiella pneumoniae: a case report. J Antimicrob Chemother 2019; 74 (11) 3399-3401
  • 95 Bavaro DF, Belati A, Diella L. et al. Cefiderocol-based combination therapy for “difficult-to-treat” gram-negative severe infections: real-life case series and future perspectives. Antibiotics (Basel) 2021; 10 (06) 652
  • 96 Abdul-Mutakabbir JC, Alosaimy S, Morrisette T, Kebriaei R, Rybak MJ. Cefiderocol: a novel siderophore cephalosporin against multidrug-resistant gram-negative pathogens. Pharmacotherapy 2020; 40 (12) 1228-1247
  • 97 Falcone M, Tiseo G, Nicastro M. et al. Cefiderocol as rescue therapy for Acinetobacter baumannii and other carbapenem-resistant gram-negative infections in intensive care unit patients. Clin Infect Dis 2021; 72 (11) 2021-2024
  • 98 SIVEXTRO tedizolid phosphate: Prescribing information. 2019; Whitehouse Station, NJ: Merck Sharp & Dohme Corp: Accessed October 30, 2021 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/205436s005lbl.pdf
  • 99 Locke JB, Finn J, Hilgers M. et al. Structure-activity relationships of diverse oxazolidinones for linezolid-resistant Staphylococcus aureus strains possessing the CFR methyltransferase gene or ribosomal mutations. Antimicrob Agents Chemother 2010; 54 (12) 5337-5343
  • 100 Rodríguez-Gascón A, Aguirre-Quiñonero A, Aspiazu MAS, Canut-Blasco A. Pharmacokinetic/Pharmacodynamic analysis of tedizolid phosphate compared to linezolid for the treatment of infections caused by gram-positive bacteria. Antibiotics (Basel) 2021; 10 (07) 755
  • 101 Burdette SD, Trotman R. Tedizolid: the first once-daily oxazolidinone class antibiotic. Clin Infect Dis 2015; 61 (08) 1315-1321
  • 102 Flanagan SD, Bien PA, Muñoz KA, Minassian SL, Prokocimer PG. Pharmacokinetics of tedizolid following oral administration: single and multiple dose, effect of food, and comparison of two solid forms of the prodrug. Pharmacotherapy 2014; 34 (03) 240-250
  • 103 Prokocimer P, Bien P, Surber J. et al. Phase 2, randomized, double-blind, dose-ranging study evaluating the safety, tolerability, population pharmacokinetics, and efficacy of oral torezolid phosphate in patients with complicated skin and skin structure infections. Antimicrob Agents Chemother 2011; 55 (02) 583-592
  • 104 Lan SH, Lin WT, Chang SP. et al. Tedizolid versus linezolid for the treatment of acute bacterial skin and skin structure infection: a systematic review and meta-analysis. Antibiotics (Basel) 2019; 8 (03) E137
  • 105 Hardalo C, Lodise TP, Bidell M. et al. Clinical safety and tolerability of tedizolid phosphate in the treatment of acute bacterial skin and skin structure infections. Expert Opin Drug Saf 2018; 17 (04) 359-367
  • 106 Schaadt R, Sweeney D, Shinabarger D, Zurenko G. In vitro activity of TR-700, the active ingredient of the antibacterial prodrug TR-701, a novel oxazolidinone antibacterial agent. Antimicrob Agents Chemother 2009; 53 (08) 3236-3239
  • 107 Prokocimer P, Bien P, Deanda C, Pillar CM, Bartizal K. In vitro activity and microbiological efficacy of tedizolid (TR-700) against Gram-positive clinical isolates from a phase 2 study of oral tedizolid phosphate (TR-701) in patients with complicated skin and skin structure infections. Antimicrob Agents Chemother 2012; 56 (09) 4608-4613
  • 108 Barber KE, Smith JR, Raut A, Rybak MJ. Evaluation of tedizolid against Staphylococcus aureus and enterococci with reduced susceptibility to vancomycin, daptomycin or linezolid. J Antimicrob Chemother 2016; 71 (01) 152-155
  • 109 Pfaller MA, Sader HS, Shortridge D, Castanheira M, Flamm RK, Mendes RE. Activity of tedizolid against gram-positive clinical isolates causing infections in Europe and surrounding areas (2014-2015). J Chemother 2019; 31 (04) 188-194
  • 110 Carvalhaes CG, Sader HS, Flamm RK, Streit JM, Mendes RE. Assessment of tedizolid in vitro activity and resistance mechanisms against a collection of Enterococcus spp. Causing invasive infections, including isolates requiring an optimized dosing strategy for daptomycin from U.S. and European Medical Centers, 2016 to 2018. Antimicrob Agents Chemother 2020; 64 (04) e00175-20
  • 111 Bensaci M, Sahm D. Surveillance of tedizolid activity and resistance: In vitro susceptibility of Gram-positive pathogens collected over 5 years from the United States and Europe. Diagn Microbiol Infect Dis 2017; 87 (02) 133-138
  • 112 Carvalhaes CG, Sader HS, Rhomberg PR, Mendes RE. Tedizolid activity against a multicentre worldwide collection of Staphylococcus aureus and Streptococcus pneumoniae recovered from patients with pneumonia (2017-2019). Int J Infect Dis 2021; 107: 92-100
  • 113 Housman ST, Pope JS, Russomanno J. et al. Pulmonary disposition of tedizolid following administration of once-daily oral 200-milligram tedizolid phosphate in healthy adult volunteers. Antimicrob Agents Chemother 2012; 56 (05) 2627-2634
  • 114 Wunderink RG, Roquilly A, Croce M. et al. A phase 3, randomized, double-blind study comparing tedizolid phosphate and linezolid for treatment of ventilated gram-positive hospital-acquired or ventilator-associated bacterial pneumonia. Clin Infect Dis 2021; 73 (03) e710-e718
  • 115 Roch M, Varela MC, Taglialegna A, Rosato AE. Tedizolid is a promising antimicrobial option for the treatment of Staphylococcus aureus infections in cystic fibrosis patients. J Antimicrob Chemother 2020; 75 (01) 126-134
  • 116 Russo A. Spotlight on new antibiotics for the treatment of pneumonia. Clin Med Insights Circ Respir Pulm Med 2020; 14: 1179548420982786
  • 117 López-Diaz MD, Culebras E, Rodríguez-Avial I. et al. Plazomicin activity against 346 extended-spectrum-β-lactamase/AmpC-producing Escherichia coli urinary isolates in relation to aminoglycoside-modifying enzymes. Antimicrob Agents Chemother 2017; 61 (02) e02454-16
  • 118 Livermore DM, Mushtaq S, Warner M. et al. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother 2011; 66 (01) 48-53
  • 119 Castanheira M, Sader HS, Mendes RE, Jones RN. Activity of plazomicin tested against Enterobacterales isolates collected from U.S. hospitals in 2016-2017: effect of different breakpoint criteria on susceptibility rates among aminoglycosides. Antimicrob Agents Chemother 2020; 64 (05) e02418-19
  • 120 Clark JA, Burgess DS. Plazomicin: a new aminoglycoside in the fight against antimicrobial resistance. Ther Adv Infect Dis 2020; 7: 2049936120952604
  • 121 Trang M, Seroogy JD, Van Wart SA. et al. Population pharmacokinetic analyses for plazomicin using pooled data from phase 1, 2, and 3 clinical studies. Antimicrob Agents Chemother 2019; 63 (04) e02329-18
  • 122 Cass R, Kostrub CF, Gotfried M, Rodvold K, Tack KJ, Bruss J. —A double-blind, randomized, placebo-controlled study to assess the safety, tolerability, plasma pharmacokinetics and lung penetration of intravenous plazomicin in healthy subjects. Abstr Eur Congr Clin Microbiol Infect Dis 2013; poster 1637
  • 123 McKinnell JA, Dwyer JP, Talbot GH. et al; CARE Study Group. Plazomicin for infections caused by carbapenem-resistant Enterobacteriaceae. N Engl J Med 2019; 380 (08) 791-793
  • 124 US FDA Advisory Committee. FDA briefing document: plazomicin sulfate injection (NDA 210303). Accessed August 10, 2018 at: https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Anti-InfectiveDrugsAdvisoryCommittee/UCM606039.pdf
  • 125 FDA. ZEMDRI Prescribing Information. 2018 Accessed October 30, 2021 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210303Orig1s000lbl.pdf
  • 126 Brogden RN, Heel RC. Aztreonam. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1986; 31 (02) 96-130
  • 127 Shields RK, Doi Y. Aztreonam combination therapy: an answer to metallo-β-lactamase-producing gram-negative bacteria?. Clin Infect Dis 2020; 71 (04) 1099-1101
  • 128 Sader HS, Mendes RE, Pfaller MA, Shortridge D, Flamm RK, Castanheira M. Antimicrobial activities of aztreonam-avibactam and comparator agents against contemporary (2016) clinical Enterobacteriaceae isolates. Antimicrob Agents Chemother 2017; 62 (01) e01856-17
  • 129 Sader HS, Duncan LR, Arends SJR, Carvalhaes CG, Castanheira M. Antimicrobial activity of aztreonam-avibactam and comparator agents when tested against a large collection of contemporary Stenotrophomonas maltophilia isolates from medical centers worldwide. Antimicrob Agents Chemother 2020; 64 (11) e01433-20
  • 130 Dupont H, Gaillot O, Goetgheluck AS. et al. Molecular characterization of carbapenem-nonsusceptible enterobacterial isolates collected during a prospective interregional survey in France and susceptibility to the novel ceftazidime-avibactam and aztreonam-avibactam combinations. Antimicrob Agents Chemother 2015; 60 (01) 215-221
  • 131 Karlowsky JA, Kazmierczak KM, de Jonge BLM, Hackel MA, Sahm DF, Bradford PA. In vitro activity of aztreonam-avibactam against Enterobacteriaceae and Pseudomonas aeruginosa isolated by clinical laboratories in 40 countries from 2012 to 2015. Antimicrob Agents Chemother 2017; 61 (09) e00472-17
  • 132 Cornely OA, Cisneros JM, Torre-Cisneros J. et al; COMBACTE-CARE Consortium/REJUVENATE Study Group. Pharmacokinetics and safety of aztreonam/avibactam for the treatment of complicated intra-abdominal infections in hospitalized adults: results from the REJUVENATE study. J Antimicrob Chemother 2020; 75 (03) 618-627
  • 133 Sy SK, Beaudoin ME, Zhuang L. et al. In vitro pharmacokinetics/pharmacodynamics of the combination of avibactam and aztreonam against MDR organisms. J Antimicrob Chemother 2016; 71 (07) 1866-1880
  • 134 ClinicalTrials.gov. A Study to Determine the Efficacy, Safety and Tolerability of Aztreonam-Avibactam (ATM-AVI) ± Metronidazole (MTZ) Versus Meropenem (MER) ± Colistin (COL) for the Treatment of Serious Infections Due to Gram Negative Bacteria. (REVISIT). 2017
  • 135 Tamma PD, Hsu AJ. Defining the role of novel β-lactam agents that target carbapenem-resistant gram-negative organisms. J Pediatric Infect Dis Soc 2019; 8 (03) 251-260
  • 136 Davido B, Fellous L, Lawrence C, Maxime V, Rottman M, Dinh A. Ceftazidime-avibactam and aztreonam, an interesting strategy to overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa . Antimicrob Agents Chemother 2017; 61 (09) e01008-17
  • 137 Shah PJ, Tran T, Emelogu F, Tariq F. Aztreonam, ceftazidime/avibactam, and colistin combination for the management of carbapenemase-producing Klebsiella Pneumoniae bacteremia: a case report. J Pharm Pract 2021; 34 (04) 653-657
  • 138 Shaw E, Rombauts A, Tubau F. et al. Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother 2018; 73 (04) 1104-1106
  • 139 Chang PC, Chen CC, Lu YC. et al. The impact of inoculum size on the activity of cefoperazone-sulbactam against multidrug resistant organisms. J Microbiol Immunol Infect 2018; 51 (02) 207-213
  • 140 Liu JW, Chen YH, Lee WS. et al. Randomized noninferiority trial of cefoperazone-sulbactam versus cefepime in the treatment of hospital-acquired and healthcare-associated pneumonia. Antimicrob Agents Chemother 2019; 63 (08) e00023-19
  • 141 Chen CH, Tu CY, Chen WC. et al. Clinical efficacy of cefoperazone-sulbactam versus piperacillin-tazobactam in the treatment of hospital-acquired pneumonia and ventilator-associated pneumonia. Infect Drug Resist 2021; 14: 2251-2258
  • 142 Zhanel GG, Cheung D, Adam H. et al. Review of eravacycline, a novel fluorocycline antibacterial agent. Drugs 2016; 76 (05) 567-588
  • 143 Seifert H, Stefanik D, Sutcliffe JA, Higgins PG. In-vitro activity of the novel fluorocycline eravacycline against carbapenem non-susceptible Acinetobacter baumannii . Int J Antimicrob Agents 2018; 51 (01) 62-64
  • 144 Van Hise N, Petrak RM, Skorodin NC. et al. A real-world assessment of clinical outcomes and safety of eravacycline: a novel fluorocycline. Infect Dis Ther 2020; 9 (04) 1017-1028
  • 145 Alosaimy S, Abdul-Mutakabbir JC, Kebriaei R, Jorgensen SCJ, Rybak MJ. Evaluation of eravacycline: a novel fluorocycline. Pharmacotherapy 2020; 40 (03) 221-238
  • 146 Connors KP, Housman ST, Pope JS. et al. Phase I, open-label, safety and pharmacokinetic study to assess bronchopulmonary disposition of intravenous eravacycline in healthy men and women. Antimicrob Agents Chemother 2014; 58 (04) 2113-2118
  • 147 Dale GE, Halabi A, Petersen-Sylla M, Wach A, Zwingelstein C. Pharmacokinetics, tolerability, and safety of murepavadin, a novel antipseudomonal antibiotic, in subjects with mild, moderate, or severe renal function impairment. Antimicrob Agents Chemother 2018; 62 (09) e00490-18
  • 148 Díez-Aguilar M, Hernández-García M, Morosini MI. et al. Murepavadin antimicrobial activity against and resistance development in cystic fibrosis Pseudomonas aeruginosa isolates. J Antimicrob Chemother 2021; 76 (04) 984-992
  • 149 Ekkelenkamp MB, Cantón R, Díez-Aguilar M. et al. Susceptibility of Pseudomonas aeruginosa recovered from cystic fibrosis patients to murepavadin and 13 comparator antibiotics. Antimicrob Agents Chemother 2020; 64 (02) e01541-19
  • 150 Locher HHCP, Brun S, Morrissey I. et al. Poster P1836. Activity of Murepavadin against Colistin-Resistant Pseudomonas aeruginosa Clinical Isolates 29th ECCMID. Amsterdam, The Netherlands: 2019
  • 151 Melchers MJ, Teague J, Warn P. et al. Pharmacokinetics and pharmacodynamics of murepavadin in neutropenic mouse models. Antimicrob Agents Chemother 2019; 63 (03) e01699-18
  • 152 Armaganidis A, Frantzeskaki F, Diakaki C. et al. Poster 1308. Pharmacokinetic and efficacy analysis of murepavadin (POL7080) coadministered with standard-of-care (SoC) in a phase II study in patients with ventilator-associated pneumonia (VAP) due to suspected or documented Pseudomonas aeruginosa infection. 27th Congress of Clinical Microbiology and Infectious Diseases. Vienna, Austria; 2017
  • 153 Andrews J, Honeybourne D, Ashby J. et al. Concentrations in plasma, epithelial lining fluid, alveolar macrophages and bronchial mucosa after a single intravenous dose of 1.6 mg/kg of iclaprim (AR-100) in healthy men. J Antimicrob Chemother 2007; 60 (03) 677-680
  • 154 Huang DB, Dryden M. Iclaprim, a dihydrofolate reductase inhibitor antibiotic in Phase III of clinical development: a review of its pharmacology, microbiology and clinical efficacy and safety. Future Microbiol 2018; 13: 957-969
  • 155 Huang DB, File Jr TM, Torres A. et al. A Phase II randomized, double-blind, multicenter study to evaluate efficacy and safety of intravenous iclaprim versus vancomycin for the treatment of nosocomial pneumonia suspected or confirmed to be due to gram-positive pathogens. Clin Ther 2017; 39 (08) 1706-1718
  • 156 Monsel A, Torres A, Zhu Y, Pugin J, Rello J, Rouby JJ. European Investigators Network for Nebulized Antibiotics in Ventilator-associated Pneumonia (ENAVAP). Nebulized antibiotics for ventilator-associated pneumonia: methodological framework for future multicenter randomized controlled trials. Curr Opin Infect Dis 2021; 34 (02) 156-168
  • 157 Bassetti M, Vena A, Russo A, Peghin M. Inhaled liposomal antimicrobial delivery in lung infections. Drugs 2020; 80 (13) 1309-1318
  • 158 Serisier DJ, Bilton D, De Soyza A. et al; ORBIT-2 Investigators. Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): a randomised, double-blind, placebo-controlled trial. Thorax 2013; 68 (09) 812-817
  • 159 Haworth CS, Bilton D, Chalmers JD. et al. Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): two phase 3, randomised controlled trials. Lancet Respir Med 2019; 7 (03) 213-226
  • 160 Kollef MH, Ricard JD, Roux D. et al. A randomized trial of the amikacin fosfomycin inhalation system for the adjunctive therapy of gram-negative ventilator-associated pneumonia: IASIS trial. Chest 2017; 151 (06) 1239-1246
  • 161 Kaku N, Morinaga Y, Takeda K. et al. Efficacy and pharmacokinetics of ME1100, a novel optimized formulation of arbekacin for inhalation, compared with amikacin in a murine model of ventilator-associated pneumonia caused by Pseudomonas aeruginosa . J Antimicrob Chemother 2017; 72 (04) 1123-1128
  • 162 Hamada Y, Suematsu H, Hirai J, Yamagishi Y, Mikamo H. [Evaluation of six cases of arbekacin inhalation for pneumonia]. Jpn J Antibiot 2014; 67 (04) 233-239
  • 163 Wang J, Kutter JP, Mu H, Moodley A, Yang M. Synergistic antibacterial effect of inhaled aztreonam and tobramycin fixed dose combination to combat multidrug-resistant Gram-negative bacteria. Int J Pharm 2020; 590: 119877
  • 164 Li M, Chang RYK, Lin Y, Morales S, Kutter E, Chan HK. Phage cocktail powder for Pseudomonas aeruginosa respiratory infections. Int J Pharm 2021; 596: 120200
  • 165 Lin Y, Chang RYK, Britton WJ, Morales S, Kutter E, Chan HK. Synergy of nebulized phage PEV20 and ciprofloxacin combination against Pseudomonas aeruginosa . Int J Pharm 2018; 551 (1-2): 158-165
  • 166 Lin Y, Quan D, Chang RYK. et al. Synergistic activity of phage PEV20-ciprofloxacin combination powder formulation - a proof-of-principle study in a P. aeruginosa lung infection model. Eur J Pharm Biopharm 2021; 158: 166-171
  • 167 Guillon A, Pardessus J, L'Hostis G. et al. Inhaled bacteriophage therapy in a porcine model of pneumonia caused by Pseudomonas aeruginosa during mechanical ventilation. Br J Pharmacol 2021; 178 (18) 3829-3842
  • 168 Wang Y, Khanal D, Chang RYK. et al. Can bacteriophage endolysins be nebulised for inhalation delivery against Streptococcus pneumoniae?. Int J Pharm 2020; 591: 119982