Semin Respir Crit Care Med 2022; 43(02): 304-309
DOI: 10.1055/s-0041-1740583
Review Article

Methicillin-Resistant Staphylococcus aureus Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia

Chiagozie I. Pickens
1   Division of Critical Care, Department of Medicine, Pulmonary, Northwestern University Feinberg School of Medicine, Chicago, Illinois
,
Richard G. Wunderink
1   Division of Critical Care, Department of Medicine, Pulmonary, Northwestern University Feinberg School of Medicine, Chicago, Illinois
› Author Affiliations
Funding This work is supported by NIH/NIAID grant U19AI135964.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP). MRSA pneumonia is associated with significant morbidity and mortality. Several virulence factors allow S. aureus to become an effective pathogen. The polysaccharide intracellular adhesin allows for the production of biofilms, some strains can produce capsular polysaccharides that protect against phagocytosis, microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) allow for colonization of epithelial surfaces, and S. aureus secretes several exotoxins that aid in tissue destruction. The α-hemolysin exotoxin secreted by S. aureus is one of the most important virulence factors for the bacteria. The diagnosis of MRSA pneumonia can be challenging; the infection may present as a mild respiratory infection or severe respiratory failure and septic shock. Many individuals are colonized with MRSA and thus a positive nasopharyngeal swab does not confirm infection in the lower respiratory tract. The management of MRSA pneumonia has evolved. Historically, vancomycin has been the primary antibiotic used to treat MRSA pneumonia. Over the past decade, prospective studies have shown that linezolid leads to higher rates of clinical cure. Monoclonal antibodies are being studied as potential therapeutic options. MRSA is an important cause of HAP/VAP; novel diagnostics may facilitate rapid diagnosis of this infection and the available literature should be used to make informed decisions on management.



Publication History

Article published online:
15 February 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Kollef MH, Shorr A, Tabak YP, Gupta V, Liu LZ, Johannes RS. Epidemiology and outcomes of health-care-associated pneumonia: results from a large US database of culture-positive pneumonia. Chest 2005; 128 (06) 3854-3862
  • 2 Lee MS, Walker V, Chen LF, Sexton DJ, Anderson DJ. The epidemiology of ventilator-associated pneumonia in a network of community hospitals: a prospective multicenter study. Infect Control Hosp Epidemiol 2013; 34 (07) 657-662
  • 3 Fridkin SK, Hill HA, Volkova NV. et al; Intensive Care Antimicrobial Resistance Epidemiology Project Hospitals. Temporal changes in prevalence of antimicrobial resistance in 23 US hospitals. Emerg Infect Dis 2002; 8 (07) 697-701
  • 4 Lewis SS, Walker VJ, Lee MS. et al. Epidemiology of methicillin-resistant Staphylococcus aureus pneumonia in community hospitals. Infect Control Hosp Epidemiol 2014; 35 (12) 1452-1457
  • 5 Dantes R, Mu Y, Belflower R. et al; Emerging Infections Program–Active Bacterial Core Surveillance MRSA Surveillance Investigators. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern Med 2013; 173 (21) 1970-1978
  • 6 Zahar J-R, Clec'h C, Tafflet M. et al; Outcomerea Study Group. Is methicillin resistance associated with a worse prognosis in Staphylococcus aureus ventilator-associated pneumonia?. Clin Infect Dis 2005; 41 (09) 1224-1231
  • 7 Theaker C, Ormond-Walshe S, Azadian B, Soni N. MRSA in the critically ill. J Hosp Infect 2001; 48 (02) 98-102
  • 8 DeRyke CA, Lodise Jr TP, Rybak MJ, McKinnon PS. Epidemiology, treatment, and outcomes of nosocomial bacteremic Staphylococcus aureus pneumonia. Chest 2005; 128 (03) 1414-1422
  • 9 Shorr AF, Tabak YP, Gupta V, Johannes RS, Liu LZ, Kollef MH. Morbidity and cost burden of methicillin-resistant Staphylococcus aureus in early onset ventilator-associated pneumonia. Crit Care 2006; 10 (03) R97
  • 10 Shorr AF, Combes A, Kollef MH, Chastre J. Methicillin-resistant Staphylococcus aureus prolongs intensive care unit stay in ventilator-associated pneumonia, despite initially appropriate antibiotic therapy. Crit Care Med 2006; 34 (03) 700-706
  • 11 Kalil AC, Metersky ML, Klompas M. et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63 (05) e61-e111
  • 12 Ekren PK, Ranzani OT, Ceccato A. et al. Evaluation of the 2016 Infectious Diseases Society of America/American Thoracic Society Guideline Criteria for risk of multidrug-resistant pathogens in patients with hospital-acquired and ventilator-associated pneumonia in the ICU. Am J Respir Crit Care Med 2018; 197 (06) 826-830
  • 13 Jenkins A, Diep BA, Mai TT. et al. Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease. MBio 2015; 6 (01) e02272-e14
  • 14 Wertheim HF, Melles DC, Vos MC. et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 2005; 5 (12) 751-762
  • 15 von Eiff C, Becker K, Machka K, Stammer H, Peters G. Study Group. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 2001; 344 (01) 11-16
  • 16 Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog 2002; 85 (Pt 1): 57-72
  • 17 Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 1997; 10 (04) 781-791
  • 18 Harkins CP, Pichon B, Doumith M. et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol 2017; 18 (01) 130-130
  • 19 Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 2008; 46 (05, Suppl 5): S350-S359
  • 20 Verdier I, Durand G, Bes M. et al. Identification of the capsular polysaccharides in Staphylococcus aureus clinical isolates by PCR and agglutination tests. J Clin Microbiol 2007; 45 (03) 725-729
  • 21 Parker D, Prince A. Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin Immunopathol 2012; 34 (02) 281-297
  • 22 Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus . Nat Rev Microbiol 2014; 12 (01) 49-62
  • 23 Tabor DE, Yu L, Mok H. et al. Staphylococcus aureus alpha-toxin is conserved among diverse hospital respiratory isolates collected from a global surveillance study and is neutralized by monoclonal antibody MEDI4893. Antimicrob Agents Chemother 2016; 60 (09) 5312-5321
  • 24 Bhakdi S, Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus . Microbiol Rev 1991; 55 (04) 733-751
  • 25 Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins (Basel) 2013; 5 (06) 1140-1166
  • 26 Bubeck Wardenburg J, Patel RJ, Schneewind O. Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect Immun 2007; 75 (02) 1040-1044
  • 27 Becker KA, Fahsel B, Kemper H. et al. Staphylococcus aureus alpha-toxin disrupts endothelial-cell tight junctions via acid sphingomyelinase and ceramide. Infect Immun 2017; 86 (01) e00606-17
  • 28 Powers ME, Kim HK, Wang Y, Bubeck Wardenburg J. ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J Infect Dis 2012; 206 (03) 352-356
  • 29 Pettigrew MM, Tanner W, Harris AD. The lung microbiome and pneumonia. J Infect Dis 2021; 223 (12, Suppl 2): S241-S245
  • 30 Clark SE. Commensal bacteria in the upper respiratory tract regulate susceptibility to infection. Curr Opin Immunol 2020; 66: 42-49
  • 31 Levine SA, Niederman MS. The impact of tracheal intubation on host defenses and risks for nosocomial pneumonia. Clin Chest Med 1991; 12 (03) 523-543
  • 32 Dangerfield B, Chung A, Webb B, Seville MT. Predictive value of methicillin-resistant Staphylococcus aureus (MRSA) nasal swab PCR assay for MRSA pneumonia. Antimicrob Agents Chemother 2014; 58 (02) 859-864
  • 33 Paonessa JR, Shah RD, Pickens CI. et al. Rapid detection of methicillin-resistant Staphylococcus aureus in BAL: a pilot randomized controlled trial. Chest 2019; 155 (05) 999-1007
  • 34 Fagon JY, Chastre J, Wolff M. et al. Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med 2000; 132 (08) 621-630
  • 35 Torres A, Niederman MS, Chastre J. et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J 2017; 50 (03) 1700582
  • 36 Cuny C, Witte W. PCR for the identification of methicillin-resistant Staphylococcus aureus (MRSA) strains using a single primer pair specific for SCCmec elements and the neighbouring chromosome-borne orfX. Clin Microbiol Infect 2005; 11 (10) 834-837
  • 37 Cruciani M, Gatti G, Lazzarini L. et al. Penetration of vancomycin into human lung tissue. J Antimicrob Chemother 1996; 38 (05) 865-869
  • 38 Stein GE, Wells EM. The importance of tissue penetration in achieving successful antimicrobial treatment of nosocomial pneumonia and complicated skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus: vancomycin and linezolid. Curr Med Res Opin 2010; 26 (03) 571-588
  • 39 Wunderink RG, Niederman MS, Kollef MH. et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis 2012; 54 (05) 621-629
  • 40 Peyrani P, Wiemken TL, Kelley R. et al; IMPACT-HAP Study Group. Higher clinical success in patients with ventilator-associated pneumonia due to methicillin-resistant Staphylococcus aureus treated with linezolid compared with vancomycin: results from the IMPACT-HAP study. Crit Care 2014; 18 (03) R118
  • 41 Tong MC, Wisniewski CS, Wolf B, Bosso JA. Comparison of linezolid and vancomycin for methicillin-resistant Staphylococcus aureus pneumonia: institutional implications. Pharmacotherapy 2016; 36 (07) 731-739
  • 42 Wunderink RG, Rello J, Cammarata SK, Croos-Dabrera RV, Kollef MH. Linezolid vs vancomycin: analysis of two double-blind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia. Chest 2003; 124 (05) 1789-1797
  • 43 Kato H, Hagihara M, Asai N. et al. Meta-analysis of vancomycin versus linezolid in pneumonia with proven methicillin-resistant Staphylococcus aureus . J Glob Antimicrob Resist 2021; 24: 98-105
  • 44 Steven D. Burdette, Robin Trotman, Tedizolid: The First Once-Daily Oxazolidinone Class Antibiotic, Clinical Infectious Diseases. , Volume 61, Issue 8, 15 October 2015, Pages 1315–1321
  • 45 Richard GWunderink, Antoine Roquilly, Martin Croce, Daniel RodriguezGonzalez, Satoshi Fujimi, Joan RButterton, Natasha Broyde, Myra WPopejoy, Jason YKim, Carisa De Anda. A Phase 3, Randomized, Double-Blind Study Comparing Tedizolid Phosphate and Linezolid for Treatment of Ventilated Gram-Positive Hospital-Acquired or Ventilator-Associated Bacterial Pneumonia, Clinical Infectious Diseases. , Volume 73, Issue 3, 1 August 2021, Pages e710–e718
  • 46 Casapao AM, Davis SL, Barr VO. et al. Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimicrob Agents Chemother 2014; 58 (05) 2541-2546
  • 47 Awad SS, Rodriguez AH, Chuang YC. et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis 2014; 59 (01) 51-61
  • 48 Palmer LB, Smaldone GC. Eradication of MRSA ventilator-associated infection with inhaled vancomycin. Eur Respir J 2017; 50 (Suppl. 61) OA4655
  • 49 Kiefer A, Bogdan C, Melichar VO. Successful eradication of newly acquired MRSA in six of seven patients with cystic fibrosis applying a short-term local and systemic antibiotic scheme. BMC Pulm Med 2018; 18 (01) 20
  • 50 Speziale P, Rindi S, Pietrocola G. Antibody-based agents in the management of antibiotic-resistant Staphylococcus aureus diseases. Microorganisms 2018; 6 (01) 25
  • 51 Rouha H, Badarau A, Visram ZC. et al. Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs 2015; 7 (01) 243-254
  • 52 François B, Mercier E, Gonzalez C. et al; MASTER 1 Study Group. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: first-in-human trial. Intensive Care Med 2018; 44 (11) 1787-1796
  • 53 Wunderink RG. Turning the phage on treatment of antimicrobial-resistant pneumonia. Am J Respir Crit Care Med 2019; 200 (09) 1081-1082
  • 54 Punjabi CD, Madaline T, Gendlina I, Chen V, Nori P, Pirofski L-A. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in respiratory cultures and diagnostic performance of the MRSA nasal polymerase chain reaction (PCR) in patients hospitalized with coronavirus disease 2019 (COVID-19) pneumonia. Infect Control Hosp Epidemiol 2021; 42 (09) 1156-1158
  • 55 Pickens CO, Gao CA, Cuttica M. et al. Bacterial superinfection pneumonia in SARS-CoV-2 respiratory failure. medRxiv 2021. Doi: 10.1101/2021.01.12.20248588
  • 56 McDanel JS, Perencevich EN, Storm J. et al. Increased mortality rates associated with Staphylococcus aureus and influenza co-infection, Maryland and Iowa, USA(1). Emerg Infect Dis 2016; 22 (07) 1253-1256