J Knee Surg 2023; 36(04): 368-381
DOI: 10.1055/s-0041-1735278
Original Article

The Large Focal Isolated Chondral Lesion

Jorge Chahla
1   Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
,
Brady T. Williams
2   Department of Orthopedic Surgery, University of Colorado, Aurora, Colorado
,
Adam B. Yanke
1   Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
,
Jack Farr
3   Knee Preservation and Cartilage Restoration Center, OrthoIndy, Indianapolis, Indiana
› Author Affiliations
Funding None.

Abstract

Focal chondral defects (FCDs) of the knee can be a debilitating condition that can clinically translate into pain and dysfunction in young patients with high activity demands. Both the understanding of the etiology of FCDs and the surgical management of these chondral defects has exponentially grown in recent years. This is reflected by the number of surgical procedures performed for FCDs, which is now approximately 200,000 annually. This fact is also apparent in the wide variety of available surgical approaches to FCDs. Although simple arthroscopic debridement or microfracture are usually the first line of treatment for smaller lesions, chondral lesions that involve a larger area or depth require restorative procedures such as osteochondral allograft transplantation or other cell-based techniques. Given the prevalence of FCDs and the increased attention on treating these lesions, a comprehensive understanding of management from diagnosis to rehabilitation is imperative for the treating surgeon. This narrative review aims to describe current concepts in the treatment of large FCDs through providing an algorithmic approach to selecting interventions to address these lesions as well as the reported outcomes in the literature.



Publication History

Received: 27 December 2019

Accepted: 25 June 2020

Article published online:
10 September 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH. Prevalence of chondral defects in athletes' knees: a systematic review. Med Sci Sports Exerc 2010; 42 (10) 1795-1801
  • 2 Arøen A, Løken S, Heir S. et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 2004; 32 (01) 211-215
  • 3 Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997; 13 (04) 456-460
  • 4 Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002; 18 (07) 730-734
  • 5 Zamber RW, Teitz CC, McGuire DA, Frost JD, Hermanson BK. Articular cartilage lesions of the knee. Arthroscopy 1989; 5 (04) 258-268
  • 6 Davies-Tuck ML, Wluka AE, Wang Y. et al. The natural history of cartilage defects in people with knee osteoarthritis. Osteoarthritis Cartilage 2008; 16 (03) 337-342
  • 7 Behery O, Siston RA, Harris JD, Flanigan DC. Treatment of cartilage defects of the knee: expanding on the existing algorithm. Clin J Sport Med 2014; 24 (01) 21-30
  • 8 Thomas D, Shaw KA, Waterman BR. Outcomes after fresh osteochondral allograft transplantation for medium to large chondral defects of the knee. Orthop J Sports Med 2019; 7 (03) 2325967119832299
  • 9 McCarthy MA, Meyer MA, Weber AE. et al. Can competitive athletes return to high-level play after osteochondral allograft transplantation of the knee?. Arthroscopy 2017; 33 (09) 1712-1717
  • 10 Crawford ZT, Schumaier AP, Glogovac G, Grawe BM. Return to sport and sports-specific outcomes after osteochondral allograft transplantation in the knee: a systematic review of studies with at least 2 years' mean follow-up. Arthroscopy 2019; 35 (06) 1880-1889
  • 11 Frank RM, McCormick F, Rosas S. et al. Reoperation rates after cartilage restoration procedures in the knee: analysis of a large US commercial database. Am J Orthop 2018; 47 (06)
  • 12 Chahla J, Sweet MC, Okoroha KR. et al. Osteochondral allograft transplantation in the patellofemoral joint: a systematic review. Am J Sports Med 2018; 363546518814236
  • 13 Zak L, Albrecht C, Wondrasch B. et al. Results 2 years after matrix-associated autologous chondrocyte transplantation using the novocart 3D scaffold: an analysis of clinical and radiological data. Am J Sports Med 2014; 42 (07) 1618-1627
  • 14 Harris JD, Siston RA, Pan X, Flanigan DC. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am 2010; 92 (12) 2220-2233
  • 15 Nawaz SZ, Bentley G, Briggs TW. et al. Autologous chondrocyte implantation in the knee: mid-term to long-term results. J Bone Joint Surg Am 2014; 96 (10) 824-830
  • 16 Biant LC, Bentley G, Vijayan S, Skinner JA, Carrington RW. Long-term results of autologous chondrocyte implantation in the knee for chronic chondral and osteochondral defects. Am J Sports Med 2014; 42 (09) 2178-2183
  • 17 Widuchowski W, Widuchowski J, Faltus R. et al. Long-term clinical and radiological assessment of untreated severe cartilage damage in the knee: a natural history study. Scand J Med Sci Sports 2011; 21 (01) 106-110
  • 18 Houck DA, Kraeutler MJ, Belk JW, Frank RM, McCarty EC, Bravman JT. Do focal chondral defects of the knee increase the risk for progression to osteoarthritis? A review of the literature. Orthop J Sports Med 2018; 6 (10) 2325967118801931
  • 19 Dye SF. The pathophysiology of patellofemoral pain: a tissue homeostasis perspective. Clin Orthop Relat Res 2005; (436) 100-110
  • 20 Gomoll AH, Minas T, Farr J, Cole BJ. Treatment of chondral defects in the patellofemoral joint. J Knee Surg 2006; 19 (04) 285-295
  • 21 Mall NA, Harris JD, Cole BJ. Clinical evaluation and preoperative planning of articular cartilage lesions of the knee. J Am Acad Orthop Surg 2015; 23 (10) 633-640
  • 22 Rosenberg TD, Paulos LE, Parker RD, Coward DB, Scott SM. The forty-five-degree posteroanterior flexion weight-bearing radiograph of the knee. J Bone Joint Surg Am 1988; 70 (10) 1479-1483
  • 23 Godin JA, Hussain ZB, Sanchez A. et al. Multicompartmental osteochondral allografts of knee and concomitant high tibial osteotomy. Arthrosc Tech 2017; 6 (05) e1959-e1965
  • 24 Samitier G, Alentorn-Geli E, Taylor DC. et al. Meniscal allograft transplantation. Part 1: systematic review of graft biology, graft shrinkage, graft extrusion, graft sizing, and graft fixation. Knee Surg Sports Traumatol Arthrosc 2015; 23 (01) 310-322
  • 25 Gomoll AH, Yoshioka H, Watanabe A, Dunn JC, Minas T. Preoperative measurement of cartilage defects by MRI underestimates lesion size. Cartilage 2011; 2 (04) 389-393
  • 26 O'Connor MA, Palaniappan M, Khan N, Bruce CE. Osteochondritis dissecans of the knee in children: a comparison of MRI and arthroscopic findings. J Bone Joint Surg Br 2002; 84 (02) 258-262
  • 27 Gillis A, Bashir A, McKeon B, Scheller A, Gray ML, Burstein D. Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol 2001; 36 (12) 743-748
  • 28 Potter HG, Foo LF. Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair. Am J Sports Med 2006; 34 (04) 661-677
  • 29 Stelzeneder D, Shetty AA, Kim SJ. et al. Repair tissue quality after arthroscopic autologous collagen-induced chondrogenesis (ACIC) assessed via T2* mapping. Skeletal Radiol 2013; 42 (12) 1657-1664
  • 30 Tiderius CJ, Tjörnstrand J, Akeson P, Södersten K, Dahlberg L, Leander P. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): intra- and interobserver variability in standardized drawing of regions of interest. Acta Radiol 2004; 45 (06) 628-634
  • 31 Young AA, Stanwell P, Williams A. et al. Glycosaminoglycan content of knee cartilage following posterior cruciate ligament rupture demonstrated by delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC): a case report. J Bone Joint Surg Am 2005; 87 (12) 2763-2767
  • 32 Kurkijärvi JE, Nissi MJ, Kiviranta I, Jurvelin JS, Nieminen MT. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties. Magn Reson Med 2004; 52 (01) 41-46
  • 33 Shelbourne KD, Jari S, Gray T. Outcome of untreated traumatic articular cartilage defects of the knee: a natural history study. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) 8-16
  • 34 Murray JR, Chitnavis J, Dixon P. et al. Osteochondritis dissecans of the knee; long-term clinical outcome following arthroscopic debridement. Knee 2007; 14 (02) 94-98
  • 35 Messner K, Maletius W. The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthop Scand 1996; 67 (02) 165-168
  • 36 Henn III RF, Gomoll AH. A review of the evaluation and management of cartilage defects in the knee. Phys Sportsmed 2011; 39 (01) 101-107
  • 37 Everhart JS, Abouljoud MM, Kirven JC, Flanigan DC. Full-thickness cartilage defects are important independent predictive factors for progression to total knee arthroplasty in older adults with minimal to moderate osteoarthritis: data from the osteoarthritis initiative. J Bone Joint Surg Am 2019; 101 (01) 56-63
  • 38 Ogura T, Merkely G, Bryant T, Winalski CS, Minas T. Autologous chondrocyte implantation “segmental-sandwich” technique for deep osteochondral defects in the knee: clinical outcomes and correlation with magnetic resonance imaging findings. Orthop J Sports Med 2019; 7 (05) 2325967119847173
  • 39 Ferruzzi A, Buda R, Cavallo M, Timoncini A, Natali S, Giannini S. Cartilage repair procedures associated with high tibial osteotomy in varus knees: clinical results at 11 years' follow-up. Knee 2014; 21 (02) 445-450
  • 40 Knutsen G, Drogset JO, Engebretsen L. et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007; 89 (10) 2105-2112
  • 41 Knutsen G, Drogset JO, Engebretsen L. et al. A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am 2016; 98 (16) 1332-1339
  • 42 Ekman E, Mäkelä K, Kohonen I, Hiltunen A, Itälä A. Favourable long-term functional and radiographical outcome after osteoautograft transplantation surgery of the knee: a minimum 10-year follow-up. Knee Surg Sports Traumatol Arthrosc 2018; 26 (12) 3560-3565
  • 43 Gudas R, Kalesinskas RJ, Kimtys V. et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 2005; 21 (09) 1066-1075
  • 44 Gudas R, Gudaite A, Pocius A. et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med 2012; 40 (11) 2499-2508
  • 45 Ulstein S, Årøen A, Røtterud JH, Løken S, Engebretsen L, Heir S. Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up. Knee Surg Sports Traumatol Arthrosc 2014; 22 (06) 1207-1215
  • 46 Rue JP, Yanke AB, Busam ML, McNickle AG, Cole BJ. Prospective evaluation of concurrent meniscus transplantation and articular cartilage repair: minimum 2-year follow-up. Am J Sports Med 2008; 36 (09) 1770-1778
  • 47 Frank RM, Cole BJ. Meniscus transplantation. Curr Rev Musculoskelet Med 2015; 8 (04) 443-450
  • 48 Abrams GD, Hussey KE, Harris JD, Cole BJ. Clinical results of combined meniscus and femoral osteochondral allograft transplantation: minimum 2-year follow-up. Arthroscopy 2014; 30 (08) 964-70.e1
  • 49 Farr J, Rawal A, Marberry KM. Concomitant meniscal allograft transplantation and autologous chondrocyte implantation: minimum 2-year follow-up. Am J Sports Med 2007; 35 (09) 1459-1466
  • 50 Marti RK, Verhagen RA, Kerkhoffs GM, Moojen TM. Proximal tibial varus osteotomy. Indications, technique, and five to twenty-one-year results. J Bone Joint Surg Am 2001; 83 (02) 164-170
  • 51 Bode G, Schmal H, Pestka JM, Ogon P, Südkamp NP, Niemeyer P. A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5°. Arch Orthop Trauma Surg 2013; 133 (01) 43-49
  • 52 Kahlenberg CA, Nwachukwu BU, Hamid KS, Steinhaus ME, Williams III RJ. Analysis of outcomes for high tibial osteotomies performed with cartilage restoration techniques. Arthroscopy 2017; 33 (02) 486-492
  • 53 Farr J. Autologous chondrocyte implantation improves patellofemoral cartilage treatment outcomes. Clin Orthop Relat Res 2007; 463 (463) 187-194
  • 54 Cotter EJ, Waterman BR, Kelly MP, Wang KC, Frank RM, Cole BJ. Multiple osteochondral allograft transplantation with concomitant tibial tubercle osteotomy for multifocal chondral disease of the knee. Arthrosc Tech 2017; 6 (04) e1393-e1398
  • 55 Wang D, Eliasberg CD, Wang T. et al. Similar outcomes after osteochondral allograft transplantation in anterior cruciate ligament-intact and -reconstructed knees: a comparative matched-group analysis with minimum 2-year follow-up. Arthroscopy 2017; 33 (12) 2198-2207
  • 56 Jones KJ, Mosich GM, Williams RJ. Fresh precut osteochondral allograft core transplantation for the treatment of femoral cartilage defects. Arthrosc Tech 2018; 7 (08) e791-e795
  • 57 Godin JA, Frangiamore S, Chahla J, Cinque ME, DePhillipo NN, LaPrade RF. Tibial allograft transfer for medial tibial plateau resurfacing. Arthrosc Tech 2017; 6 (03) e661-e665
  • 58 Bartlett W, Skinner JA, Gooding CR. et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 2005; 87 (05) 640-645
  • 59 Sohn DH, Lottman LM, Lum LY. et al. Effect of gravity on localization of chondrocytes implanted in cartilage defects. Clin Orthop Relat Res 2002; (394) 254-262
  • 60 Gikas PD, Bayliss L, Bentley G, Briggs TW. An overview of autologous chondrocyte implantation. J Bone Joint Surg Br 2009; 91 (08) 997-1006
  • 61 Frenkel SR, Toolan B, Menche D, Pitman MI, Pachence JM. Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Joint Surg Br 1997; 79 (05) 831-836
  • 62 Zellner J, Grechenig S, Pfeifer CG. et al. Clinical and radiological regeneration of large and deep osteochondral defects of the knee by bone augmentation combined with matrix-guided autologous chondrocyte transplantation. Am J Sports Med 2017; 45 (13) 3069-3080
  • 63 Albrecht F, Roessner A, Zimmermann E. Closure of osteochondral lesions using chondral fragments and fibrin adhesive. Arch Orthop Trauma Surg 1983; 101 (03) 213-217
  • 64 Bonasia DE, Martin JA, Marmotti A. et al. Cocultures of adult and juvenile chondrocytes compared with adult and juvenile chondral fragments: in vitro matrix production. Am J Sports Med 2011; 39 (11) 2355-2361
  • 65 McCormick F, Yanke A, Provencher MT, Cole BJ. Minced articular cartilage–basic science, surgical technique, and clinical application. Sports Med Arthrosc Rev 2008; 16 (04) 217-220
  • 66 Cole BJ, Farr J, Winalski CS. et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med 2011; 39 (06) 1170-1179
  • 67 Woodmass JM, Melugin HP, Wu IT, Saris DBF, Stuart MJ, Krych AJ. Viable osteochondral allograft for the treatment of a full-thickness cartilage defect of the patella. Arthrosc Tech 2017; 6 (05) e1661-e1665
  • 68 Mithoefer K, Hambly K, Logerstedt D, Ricci M, Silvers H, Della Villa S. Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther 2012; 42 (03) 254-273
  • 69 Seo S-S, Kim C-W, Jung D-W. Management of focal chondral lesion in the knee joint. Knee Surg Relat Res 2011; 23 (04) 185-196
  • 70 Jones DG, Peterson L. Autologous chondrocyte implantation. Instr Course Lect 2007; 56: 429-445
  • 71 Nielsen ES, McCauley JC, Pulido PA, Bugbee WD. Return to sport and recreational activity after osteochondral allograft transplantation in the knee. Am J Sports Med 2017; 45 (07) 1608-1614
  • 72 Balazs GC, Wang D, Burge AJ, Sinatro AL, Wong AC, Williams III RJ. Return to play among elite basketball players after osteochondral allograft transplantation of full-thickness cartilage lesions. Orthop J Sports Med 2018; 6 (07) 2325967118786941
  • 73 Tírico LEP, McCauley JC, Pulido PA, Bugbee WD. Does anterior cruciate ligament reconstruction affect the outcome of osteochondral allograft transplantation?: a matched cohort study with a mean follow-up of 6 years. Am J Sports Med 2018; 46 (08) 1836-1843
  • 74 Frank RM, Lee S, Cotter EJ, Hannon CP, Leroux T, Cole BJ. Outcomes of osteochondral allograft transplantation with and without concomitant meniscus allograft transplantation: a comparative matched group analysis. Am J Sports Med 2018; 46 (03) 573-580
  • 75 Wang D, Kalia V, Eliasberg CD. et al. Osteochondral allograft transplantation of the knee in patients aged 40 years and older. Am J Sports Med 2018; 46 (03) 581-589
  • 76 Frank RM, Cotter EJ, Lee S, Poland S, Cole BJ. Do outcomes of osteochondral allograft transplantation differ based on age and sex?: a comparative matched group analysis. Am J Sports Med 2018; 46 (01) 181-191
  • 77 Wang D, Rebolledo BJ, Dare DM. et al. Osteochondral allograft transplantation of the knee in patients with an elevated body mass index. Cartilage 2018; 1947603518754630
  • 78 Krych AJ, Robertson CM, Williams III RJ. Cartilage Study Group. Return to athletic activity after osteochondral allograft transplantation in the knee. Am J Sports Med 2012; 40 (05) 1053-1059
  • 79 Raz G, Safir OA, Backstein DJ, Lee PT, Gross AE. Distal femoral fresh osteochondral allografts: follow-up at a mean of twenty-two years. J Bone Joint Surg Am 2014; 96 (13) 1101-1107
  • 80 Merkely G, Ogura T, Ackermann J, Barbieri Mestriner A, Gomoll AH. Clinical outcomes after revision of autologous chondrocyte implantation to osteochondral allograft transplantation for large chondral defects: a comparative matched-group analysis. Cartilage 2019; 1947603519833136
  • 81 Cotter EJ, Hannon CP, Christian DR. et al. Clinical outcomes of multifocal osteochondral allograft transplantation of the knee: an analysis of overlapping grafts and multifocal lesions. Am J Sports Med 2018; 46 (12) 2884-2893
  • 82 Nuelle CW, Nuelle JA, Cook JL, Stannard JP. Patient factors, donor age, and graft storage duration affect osteochondral allograft outcomes in knees with or without comorbidities. J Knee Surg 2017; 30 (02) 179-184
  • 83 Niethammer TR, Holzgruber M, Gülecyüz MF, Weber P, Pietschmann MF, Müller PE. Matrix based autologous chondrocyte implantation in children and adolescents: a match paired analysis in a follow-up over three years post-operation. Int Orthop 2017; 41 (02) 343-350
  • 84 Rosenberger RE, Gomoll AH, Bryant T, Minas T. Repair of large chondral defects of the knee with autologous chondrocyte implantation in patients 45 years or older. Am J Sports Med 2008; 36 (12) 2336-2344
  • 85 McNickle AG, L'Heureux DR, Yanke AB, Cole BJ. Outcomes of autologous chondrocyte implantation in a diverse patient population. Am J Sports Med 2009; 37 (07) 1344-1350
  • 86 Beris AE, Lykissas MG, Kostas-Agnantis I, Manoudis GN. Treatment of full-thickness chondral defects of the knee with autologous chondrocyte implantation: a functional evaluation with long-term follow-up. Am J Sports Med 2012; 40 (03) 562-567
  • 87 Ebert JR, Schneider A, Fallon M, Wood DJ, Janes GC. A comparison of 2-year outcomes in patients undergoing tibiofemoral or patellofemoral matrix-induced autologous chondrocyte implantation. Am J Sports Med 2017; 45 (14) 3243-3253
  • 88 Moradi B, Schönit E, Nierhoff C. et al. First-generation autologous chondrocyte implantation in patients with cartilage defects of the knee: 7 to 14 years' clinical and magnetic resonance imaging follow-up evaluation. Arthroscopy 2012; 28 (12) 1851-1861
  • 89 Gowd AK, Cvetanovich GL, Liu JN. et al. Management of chondral lesions of the knee: analysis of trends and short-term complications using the national surgical quality improvement program database. Arthroscopy 2019; 35 (01) 138-146
  • 90 Niemeyer P, Pestka JM, Kreuz PC. et al. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 2008; 36 (11) 2091-2099
  • 91 Farr J, Cole BJ, Sherman S, Karas V. Particulated articular cartilage: CAIS and DeNovo NT. J Knee Surg 2012; 25 (01) 23-29
  • 92 Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med 2014; 42 (06) 1417-1425
  • 93 Wang T, Belkin NS, Burge AJ. et al. Patellofemoral cartilage lesions treated with particulated juvenile allograft cartilage: a prospective study with minimum 2-year clinical and magnetic resonance imaging outcomes. Arthroscopy 2018; 34 (05) 1498-1505
  • 94 Vangsness Jr CT, Higgs G, Hoffman JK. et al. Implantation of a novel cryopreserved viable osteochondral allograft for articular cartilage repair in the knee. J Knee Surg 2018; 31 (06) 528-535
  • 95 Melugin HP, Ridley TJ, Bernard CD. et al. Prospective outcomes of cryopreserved osteochondral allograft for patellofemoral cartilage defects at minimum 2-year follow-up. Cartilage 2020; 1947603520903420
  • 96 Carter AH, Guttierez N, Subhawong TK. et al. MR imaging of BioCartilage augmented microfracture surgery utilizing 2D MOCART and KOOS scores. J Clin Orthop Trauma 2018; 9 (02) 146-152
  • 97 Wang KC, Frank RM, Cotter EJ, Christian DR, Cole BJ. Arthroscopic management of isolated tibial plateau defect with microfracture and micronized allogeneic cartilage-platelet-rich plasma adjunct. Arthrosc Tech 2017; 6 (05) e1613-e1618
  • 98 Schallmo MS, Marquez-Lara A, Luo TD, Rosas S, Stubbs AJ. Arthroscopic treatment of hip chondral defect with microfracture and platelet-rich plasma-infused micronized cartilage allograft augmentation. Arthrosc Tech 2018; 7 (04) e361-e365
  • 99 Steinwachs MR, Gille J, Volz M. et al. Systematic review and meta-analysis of the clinical evidence on the use of autologous matrix-induced chondrogenesis in the knee. Cartilage 2019; 1947603519870846
  • 100 Bertho P, Pauvert A, Pouderoux T, Robert H. Orthopaedics and Traumatology Society of Western France (SOO). Treatment of large deep osteochondritis lesions of the knee by autologous matrix-induced chondrogenesis (AMIC): Preliminary results in 13 patients. Orthop Traumatol Surg Res 2018; 104 (05) 695-700
  • 101 Schiavone Panni A, Del Regno C, Mazzitelli G, D'Apolito R, Corona K, Vasso M. Good clinical results with autologous matrix-induced chondrogenesis (Amic) technique in large knee chondral defects. Knee Surg Sports Traumatol Arthrosc 2018; 26 (04) 1130-1136
  • 102 de Girolamo L, Schönhuber H, Viganò M. et al. Autologous matrix-induced chondrogenesis (AMIC) and AMIC enhanced by autologous concentrated bone marrow aspirate (BMAC) allow for stable clinical and functional improvements at up to 9 years follow-up: results from a randomized controlled study. J Clin Med 2019; 8 (03) E392
  • 103 Volz M, Schaumburger J, Frick H, Grifka J, Anders S. A randomized controlled trial demonstrating sustained benefit of autologous matrix-induced chondrogenesis over microfracture at five years. Int Orthop 2017; 41 (04) 797-804
  • 104 Fossum V, Hansen AK, Wilsgaard T, Knutsen G. Collagen-covered autologous chondrocyte implantation versus autologous matrix-induced chondrogenesis: a randomized trial comparing 2 methods for repair of cartilage defects of the knee. Orthop J Sports Med 2019; 7 (09) 2325967119868212