CC BY-NC-ND 4.0 · Ann Natl Acad Med Sci 2021; 57(04): 202-213
DOI: 10.1055/s-0041-1731597
Review Article

A Step Toward Optimizing Regenerative Medicine Principle to Combat COVID-19

1   Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
,
2   Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
,
3   Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India
,
4   Department of Plastic Surgery, Topiwala National Medical College and BYL Nair Ch. Hospital, Mumbai, Maharashtra, India
,
5   Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka, India
,
6   Department of Orthopedics, Sri Devaraj URS Medical College, Kolar, Karnataka, India
,
7   Biocon Biologics, Chennai, Tamil Nadu, India
,
8   Department of Microbiology, PSG BioNEST, PSG TECH, Coimbatore, Tamil Nadu, India
,
9   School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
,
10   Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
› Author Affiliations

Abstract

Drugs are currently not licensed in specific to pulverize COVID-19. On an emergency basis, vaccines were approved to prevent the further spread of COVID-19. This serves as a potential background for considering the optimization of biologics. In this context, evidence on convalescent plasma and stem cells has shown a beneficial role. Here, we have considered this as plausible therapy, and further hypothesize that their cocktails will synergistically boost the immunogenicity to relegate COVID-19. This warrants a large volume clinical trial on an emergent basis, because the sooner we establish a safe and effective cure, the better.



Publication History

Article published online:
21 June 2021

© 2021. National Academy of Medical Sciences (India). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Coronavirus Disease (COVID-19) Situation Reports. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed March 8, 2021
  • 2 Abd El-Aziz TM, Stockand JD. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infect Genet Evol 2020; 83: 104327
  • 3 McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 2020; 157: 104859
  • 4 “Solidarity” clinical trial for COVID-19 treatments. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments. Accessed March 8, 2021
  • 5 Uzunova K, Filipova E, Pavlova V, Vekov T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed Pharmacother 2020; 131: 110668
  • 6 Tobaiqy M, Qashqary M, Al-Dahery S. et al Therapeutic management of patients with COVID-19: a systematic review. Infect Prev Pract 2020; 2 (03) 100061
  • 7 Thiagarajan K. Covid-19: India is at centre of global vaccine manufacturing, but opacity threatens public trust. BMJ 2021; 372 (196) n196
  • 8 Li L, Zhang W, Hu Y. et al Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA 2020; 324 (05) 460-470
  • 9 Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020; 20 (04) 398-400
  • 10 Abolghasemi H, Eshghi P, Cheraghali AM. et al Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study. Transfus Apheresis Sci 2020; 59 (05) 102875
  • 11 Klasse PJ. Neutralization of virus infectivity by antibodies: old problems in new perspectives. Adv Biol 2014; 2014: 157895
  • 12 Coughlin MM, Prabhakar BS. Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential. Rev Med Virol 2012; 22 (01) 2-17
  • 13 Marano G, Vaglio S, Pupella S. et al Convalescent plasma: new evidence for an old therapeutic tool?. Blood Transfus 2016; 14 (02) 152-157
  • 14 Zhao Q, He Y. Challenges of convalescent plasma therapy on COVID-19. J Clin Virol 2020; 127: 104358
  • 15 Rojas M, Rodríguez Y, Monsalve DM. et al Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev 2020; 19 (07) 102554
  • 16 Shamim S, Khan M, Kharaba ZJ, Ijaz M, Murtaza G. Potential strategies for combating COVID-19. Arch Virol 2020; 165 (11) 2419-2438
  • 17 Piyush R, Rajarshi K, Khan R, Ray S. Convalescent plasma therapy: a promising coronavirus disease 2019 treatment strategy. Open Biol 2020; 10 (09) 200174
  • 18 Wooding DJ, Bach H. Treatment of COVID-19 with convalescent plasma: lessons from past coronavirus outbreaks. Clin Microbiol Infect 2020; 26 (10) 1436-1446
  • 19 Liu L, Wei Q, Lin Q. et al Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 2019; 4 (04) 123158
  • 20 Iqbal H. The importance of cell-mediated immunity in COVID-19 - An opinion. Med Hypotheses 2020; 143: 110152
  • 21 Selvi V. Convalescent plasma: a challenging tool to treat COVID-19 Patients-A lesson from the past and new perspectives. BioMed Res Int 2020; 2020: 2606058
  • 22 Wong VWS, Dai D, Wu AKL, Sung JJ. Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med J 2003; 9 (03) 199-201
  • 23 Şimşek Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turk J Med Sci 2020; 50 (SI-1) 611-619
  • 24 Poutanen SM, Low DE, Henry B. et al National Microbiology Laboratory, Canada; Canadian Severe Acute Respiratory Syndrome Study Team. Identification of severe acute respiratory syndrome in Canada. N Engl J Med 2003; 348 (20) 1995-2005
  • 25 The PREVENT Study Group. Reduction of respiratory syncytial virus hospitalization among premature infants and infants with bronchopulmonary dysplasia using respiratory syncytial virus immune globulin prophylaxis. Pediatrics 1997; 99 (01) 93-99
  • 26 Leider JP, Brunker PAR, Ness PM. Convalescent transfusion for pandemic influenza: preparing blood banks for a new plasma product?. Transfusion 2010; 50 (06) 1384-1398
  • 27 Rosenke K, Bounds CE, Hanley PW. et al Human polyclonal antibodies produced by transchromosomal cattle provide partial protection against lethal Zaire Ebolavirus challenge in Rhesus macaques. J Infect Dis 2018; 218 (suppl_5) S658-S661
  • 28 Duan K, Liu B, Li C. et al Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A 2020; 117 (17) 9490-9496
  • 29 Verma HK, Farran B, Bhaskar LVKS. Convalescent plasma transfusion a promising therapy for coronavirus diseases 2019 (COVID-19): current updates. Antib Ther 2020; 3 (02) 115-125
  • 30 Christ GJ, Saul JM, Furth ME, Andersson K-E. The pharmacology of regenerative medicine. Pharmacol Rev 2013; 65 (03) 1091-1133
  • 31 Dzobo K, Thomford NE, Senthebane DA. et al Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int 2018; 2018: 2495848
  • 32 Chen F-M, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 2016; 53: 86-168
  • 33 Christ B, Franquesa M, Najimi M, van der Laan LJW, Dahlke MH. Cellular and molecular mechanisms of mesenchymal stem cell actions. Stem Cells Int 2017; 2017: 2489041
  • 34 Foley L, Whitaker M. Concise review: cell therapies: the route to widespread adoption. Stem Cells Transl Med 2012; 1 (05) 438-447
  • 35 Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial overview on mesenchymal stem cell biological and physical properties as an opportunity in translational medicine. Int J Mol Sci 2019; 20 (21) E5386
  • 36 Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019; 8 (08) E886
  • 37 Green EM, Lee RT. Proteins and small molecules for cellular regenerative medicine. Physiol Rev 2013; 93 (01) 311-325
  • 38 Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs 2009; 24 (02) 98-103 quiz 104–105
  • 39 Okano H, Sipp D. New trends in cellular therapy. Development 2020; 147 (18) dev192567
  • 40 Jeyaraman M, Ranjan R, Kumar R. et al Cellular therapy: shafts of light emerging for COVID-19. Stem Cell Investig 2020; 7: 11
  • 41 Jeyaraman M, John A, Koshy S. et al Fostering mesenchymal stem cell therapy to halt cytokine storm in COVID-19. Biochim Biophys Acta Mol Basis Dis 2021; 1867 (02) 166014
  • 42 Yorukoglu AC, Kiter AE, Akkaya S, Satiroglu-Tufan NL, Tufan AC. A concise review on the use of mesenchymal stem cells in cell sheet-based tissue engineering with special emphasis on bone tissue regeneration. Stem Cells Int 2017; 2017: 2374161
  • 43 Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 2015; 35 (02) e00191
  • 44 Volarevic V, Markovic BS, Gazdic M. et al Ethical and safety issues of stem cell-based therapy. Int J Med Sci 2018; 15 (01) 36-45
  • 45 Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 2019; 4 (01) 22
  • 46 Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 2013; 34 (06) 747-754
  • 47 Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J 2018; 18 (03) e264-e277
  • 48 Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 2020; 11 (01) 49
  • 49 Paul D, Samuel SM, Maulik N. Mesenchymal stem cell: present challenges and prospective cellular cardiomyoplasty approaches for myocardial regeneration. Antioxid Redox Signal 2009; 11 (08) 1841-1855
  • 50 Gianakos AL, Sun L, Patel JN, Adams DM, Liporace FA. Clinical application of concentrated bone marrow aspirate in orthopaedics: A systematic review. World J Orthop 2017; 8 (06) 491-506
  • 51 Zhao Q, Ren H, Han Z. Mesenchymal stem cells: immunomodulatory capability and clinical potential in immune diseases. J Cell Immunother 2016; 2 (01) 3-20
  • 52 Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther 2017; 8 (01) 145
  • 53 Gentile P, Scioli MG, Bielli A, Orlandi A, Cervelli V. Comparing different nanofat procedures on scars: role of the stromal vascular fraction and its clinical implications. Regen Med 2017; 12 (08) 939-952
  • 54 Alexander RW. Understanding adipose-derived stromal vascular fraction (AD-SVF) cell biology and use on the basis of cellular, chemical, structural and paracrine components: a concise review. Journal of Prolotherapy 2012; 4: e855-e869
  • 55 Mazini L, Rochette L, Amine M, Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci 2019; 20 (10) E2523
  • 56 Chu D-T, Nguyen Thi Phuong T, Tien NLB. et al Adipose tissue stem cells for therapy: an update on the progress of isolation, culture, storage, and clinical application. J Clin Med 2019; 8 (07) E917
  • 57 Atluri S, Manchikanti L, Hirsch JA. Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: the case for compassionate use. Pain Physician 2020; 23 (02) E71-E83
  • 58 Marmotti A, Mattia S, Castoldi F. et al Allogeneic umbilical cord-derived mesenchymal stem cells as a potential source for cartilage and bone regeneration: an in vitro study. Stem Cells Int 2017; 2017: 1732094
  • 59 Rady D, Abbass MM, El-Rashidy AA. et al Mesenchymal stem/progenitor cells: the prospect of human clinical translation. Stem Cells Int 2020; 2020: 8837654
  • 60 Parekkadan B, Milwid JM. Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 2010; 12: 87-117
  • 61 Weiss ARR, Dahlke MH. Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol 2019; 10: 1191
  • 62 Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 2008; 57 (07) 1759-1767
  • 63 Kyurkchiev D, Bochev I, Ivanova-Todorova E. et al Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 2014; 6 (05) 552-570
  • 64 Machado Cde V, Telles PD, Nascimento IL. Immunological characteristics of mesenchymal stem cells. Rev Bras Hematol Hemoter 2013; 35 (01) 62-67
  • 65 Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA. Concise review: Mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells 2011; 29 (06) 913-919
  • 66 Lu Z, Chang W, Meng S. et al Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth factor to alleviate acute lung injury. Stem Cell Res Ther 2019; 10 (01) 372
  • 67 Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial activity of mesenchymal stem cells: current status and new perspectives of antimicrobial peptide-based therapies. Front Immunol 2017; 8: 339
  • 68 Yagi H, Chen AF, Hirsch D. et al Antimicrobial activity of mesenchymal stem cells against Staphylococcus aureus. Stem Cell Res Ther 2020; 11 (01) 293
  • 69 Sutton MT, Fletcher D, Ghosh SK. et al Antimicrobial properties of mesenchymal stem cells: therapeutic potential for cystic fibrosis infection, and treatment. Stem Cells Int 2016; 2016: 5303048
  • 70 Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of immune response during SARS-CoV-2 Infection: lessons from the past. Front Immunol 2020; 11: 1949
  • 71 Crivelli B, Chlapanidas T, Perteghella S. et al Italian Mesenchymal Stem Cell Group (GISM). Mesenchymal stem/stromal cell extracellular vesicles: from active principle to next generation drug delivery system. J Control Release 2017; 262: 104-117
  • 72 Gupta A, Kashte S, Gupta M, Rodriguez HC, Gautam SS, Kadam S. Mesenchymal stem cells and exosome therapy for COVID-19: current status and future perspective. Hum Cell 2020; 33 (04) 907-918
  • 73 Rezakhani L, Kelishadrokhi AF, Soleimanizadeh A, Rahmati S. Mesenchymal stem cell (MSC)-derived exosomes as a cell-free therapy for patients infected with COVID-19: real opportunities and range of promises. Chem Phys Lipids 2021; 234: 105009
  • 74 Pinky GuptaS, Krishnakumar V, Sharma Y, Dinda AK, Mohanty S. Mesenchymal stem cell derived exosomes: a nano platform for therapeutics and drug delivery in combating COVID-19. Stem Cell Rev Rep 2021; 17 (01) 33-43
  • 75 Zhou P, Yang X-L, Wang X-G. et al A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579 (7798) 270-273
  • 76 Grein J, Ohmagari N, Shin D. et al Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med 2020; 382 (24) 2327-2336
  • 77 Ma N, Gai H, Mei J. et al Bone marrow mesenchymal stem cells can differentiate into type II alveolar epithelial cells in vitro. Cell Biol Int 2011; 35 (12) 1261-1266
  • 78 Lanzoni G, Linetsky E, Correa D. et al Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med 2021; 10 (05) 660-673
  • 79 Tzouvelekis A, Paspaliaris V, Koliakos G. et al A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. J Transl Med 2013; 11: 171
  • 80 Cardenes N, Aranda-Valderrama P, Carney JP. et al Cell therapy for ARDS: efficacy of endobronchial versus intravenous administration and biodistribution of MAPCs in a large animal model. BMJ Open Respir Res 2019; 6 (01) e000308
  • 81 Antoniou KM, Karagiannis K, Tsitoura E. et al Clinical applications of mesenchymal stem cells in chronic lung diseases. Biomed Rep 2018; 8 (04) 314-318
  • 82 Cheng S-L, Lin C-H, Yao C-L. Mesenchymal stem cell administration in patients with chronic obstructive pulmonary disease: state of the science. Stem Cells Int 2017; 2017: 8916570
  • 83 Hoffmann M, Kleine-Weber H, Schroeder S. et al SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181 (02) 271-280.e8
  • 84 Wruck W, Adjaye J. SARS-CoV-2 receptor ACE2 is co-expressed with genes related to transmembrane serine proteases, viral entry, immunity and cellular stress. Sci Rep 2020; 10 (01) 21415
  • 85 Hamming I, Timens W, Bulthuis MLC. Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203 (02) 631-637
  • 86 Song P, Li W, Xie J, Hou Y, You C. Cytokine storm induced by SARS-CoV-2. Clin Chim Acta 2020; 509: 280-287
  • 87 Al-Khawaga S, Abdelalim EM. Potential application of mesenchymal stem cells and their exosomes in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Res Ther 2020; 11 (01) 437
  • 88 Durand N, Mallea J, Zubair AC. Insights into the use of mesenchymal stem cells in COVID-19 mediated acute respiratory failure. NPJ Regen Med 2020; 5 (01) 17
  • 89 Raza SS, Khan MA. Mesenchymal stem cells: A new front emerge in COVID19 treatment. Cytotherapy 2020; Doi: DOI: 10.1016/j.jcyt.2020.07.002.
  • 90 Advanced Search - ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/search/advanced. Accessed March 9, 2021
  • 91 Leng Z, Zhu R, Hou W. et al Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11 (02) 216-228
  • 92 Liang B, Chen J, Li T. et al Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells: a case report. Medicine (Baltimore) 2020; 99 (31) e21429
  • 93 Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int 2019; 2019: 9628536
  • 94 Ikebe C, Suzuki K. Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols. BioMed Res Int 2014; 2014: 951512
  • 95 Torre ML, Lucarelli E, Guidi S. et al Gruppo Italiano Staminali Mesenchimali (GISM). Ex vivo expanded mesenchymal stromal cell minimal quality requirements for clinical application. Stem Cells Dev 2015; 24 (06) 677-685
  • 96 Codinach M, Blanco M, Ortega I. et al Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells. Cytotherapy 2016; 18 (09) 1197-1208
  • 97 Grisendi G, Annerén C, Cafarelli L. et al GMP-manufactured density gradient media for optimized mesenchymal stromal/stem cell isolation and expansion. Cytotherapy 2010; 12 (04) 466-477
  • 98 Wuchter P, Bieback K, Schrezenmeier H. et al Standardization of Good Manufacturing Practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 2015; 17 (02) 128-139
  • 99 Deasy BM, Anderson JE, Zelina S. Regulatory issues in the therapeutic use of stem cells. Regen Med Tissue Eng 2013; Doi: DOI: 10.5772/55945.
  • 100 Peng H, Gong T, Huang X. et al A synergistic role of convalescent plasma and mesenchymal stem cells in the treatment of severely ill COVID-19 patients: a clinical case report. Stem Cell Res Ther 2020; 11 (01) 291
  • 101 Kavianpour M, Saleh M, Verdi J. The role of mesenchymal stromal cells in immune modulation of COVID-19: focus on cytokine storm. Stem Cell Res Ther 2020; 11 (01) 404
  • 102 Fan X-L, Zhang Y, Li X, Fu Q-L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci 2020; 77 (14) 2771-2794
  • 103 Naji A, Favier B, Deschaseaux F, Rouas-Freiss N, Eitoku M, Suganuma N. Mesenchymal stem/stromal cell function in modulating cell death. Stem Cell Res Ther 2019; 10 (01) 56
  • 104 Weiss DJ, English K, Krasnodembskaya A, Isaza-Correa JM, Hawthorne IJ, Mahon BP. The necrobiology of mesenchymal stromal cells affects therapeutic efficacy. Front Immunol 2019; 10: 1228
  • 105 Robbins JB, Schneerson R, Szu SC. Perspective: hypothesis: serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J Infect Dis 1995; 171 (06) 1387-1398
  • 106 Casadevall A, Pirofski LA. Antibody-mediated regulation of cellular immunity and the inflammatory response. Trends Immunol 2003; 24 (09) 474-478
  • 107 Casadevall A, Scharff MD. Serum therapy revisited: animal models of infection and development of passive antibody therapy. Antimicrob Agents Chemother 1994; 38 (08) 1695-1702