Semin Respir Crit Care Med 2021; 42(04): 537-548
DOI: 10.1055/s-0041-1730919
Review Article

Primary Ciliary Dyskinesia

Amelia Shoemark
1   Scottish Centre for Respiratory Research, Division of Molecular and Clinical Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom
2   PCD Diagnostic Service, Royal Brompton Hospital, London, United Kingdom
,
Katharine Harman
3   Department of Paediatrics and Child Health, King's College Hospital, London, United Kingdom
› Author Affiliations

Abstract

Primary ciliary dyskinesia (PCD) is an inherited cause of bronchiectasis. The estimated PCD prevalence in children with bronchiectasis is up to 26% and in adults with bronchiectasis is 1 to 13%. Due to dysfunction of the multiple motile cilia of the respiratory tract patients suffer from poor mucociliary clearance. Clinical manifestations are heterogeneous; however, a typical patient presents with chronic productive cough and rhinosinusitis from early life. Other symptoms reflect the multiple roles of motile cilia in other organs and can include otitis media and hearing loss, infertility, situs inversus, complex congenital heart disease, and more rarely other syndromic features such as hydrocephalus and retinitis pigmentosa. Awareness, identification, and diagnosis of a patient with PCD are important for multidisciplinary care and genetic counseling. Diagnosis can be pursued through a multitest pathway which includes the measurement of nasal nitric oxide, sampling the nasal epithelium to assess ciliary function and structure, and genotyping. Diagnosis is confirmed by the identification of a hallmark ultrastructural defect or pathogenic mutations in one of > 45 PCD causing genes. When a diagnosis is established management is centered around improving mucociliary clearance through physiotherapy and treatment of infection with antibiotics. The first international randomized controlled trial in PCD has recently been conducted showing azithromycin is effective in reducing exacerbations. It is likely that evidence-based PCD-specific management guidelines and therapies will be developed in the near future. This article examines prevalence, clinical features, diagnosis, and management of PCD highlighting recent advances in basic science and clinical care.



Publication History

Article published online:
14 July 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Flume PA, Chalmers JD, Olivier KN. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet 2018; 392 (10150): 880-890
  • 2 Rogers GB, Carroll MP, Zain NM. et al. Complexity, temporal stability, and clinical correlates of airway bacterial community composition in primary ciliary dyskinesia. J Clin Microbiol 2013; 51 (12) 4029-4035
  • 3 Walker WT, Jackson CL, Allan RN. et al. Primary ciliary dyskinesia ciliated airway cells show increased susceptibility to Haemophilus influenzae biofilm formation. Eur Respir J 2017; 50 (03) 1700612
  • 4 Shah A, Shoemark A, MacNeill SJ. et al. A longitudinal study characterising a large adult primary ciliary dyskinesia population. Eur Respir J 2016; 48 (02) 441-450
  • 5 Bush A, Payne D, Pike S, Jenkins G, Henke MO, Rubin BK. Mucus properties in children with primary ciliary dyskinesia: comparison with cystic fibrosis. Chest 2006; 129 (01) 118-123
  • 6 Ratjen F, Waters V, Klingel M. et al. Changes in airway inflammation during pulmonary exacerbations in patients with cystic fibrosis and primary ciliary dyskinesia. Eur Respir J 2016; 47 (03) 829-836
  • 7 Torgersen J. Genic factors in visceral asymmetry and in the development and pathologic changes of lungs, heart and abdominal organs. Arch Pathol (Chic) 1949; 47 (06) 566-593
  • 8 Behan L, Dunn Galvin A, Rubbo B. et al. Diagnosing primary ciliary dyskinesia: an international patient perspective. Eur Respir J 2016; 48 (04) 1096-1107
  • 9 Kuehni CE, Frischer T, Strippoli MP. et al; ERS Task Force on Primary Ciliary Dyskinesia in Children. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur Respir J 2010; 36 (06) 1248-1258
  • 10 Afzelius BA, Stenram U. Prevalence and genetics of immotile-cilia syndrome and left-handedness. Int J Dev Biol 2006; 50 (06) 571-573
  • 11 Ardura-Garcia C, Goutaki M, Carr SB. et al. Registries and collaborative studies for primary ciliary dyskinesia in Europe. ERJ Open Res 2020; 6 (02) 00005-02020
  • 12 O'Callaghan C, Chetcuti P, Moya E. High prevalence of primary ciliary dyskinesia in a British Asian population. Arch Dis Child 2010; 95 (01) 51-52
  • 13 Onoufriadis A, Paff T, Antony D. et al; UK10K. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet 2013; 92 (01) 88-98
  • 14 Halbeisen FS, Shoemark A, Barbato A. et al. Time trends in diagnostic testing for primary ciliary dyskinesia in Europe. Eur Respir J 2019; 54 (04) 1900528
  • 15 Shoemark A, Ozerovitch L, Wilson R. Aetiology in adult patients with bronchiectasis. Respir Med 2007; 101 (06) 1163-1170
  • 16 Lonni S, Chalmers JD, Goeminne PC. et al. Etiology of non-cystic fibrosis bronchiectasis in adults and its correlation to disease severity. Ann Am Thorac Soc 2015; 12 (12) 1764-1770
  • 17 Contarini M, Shoemark A, Rademacher J. et al. Why, when and how to investigate primary ciliary dyskinesia in adult patients with bronchiectasis. Multidiscip Respir Med 2018; 13 (Suppl. 01) 26
  • 18 McCallum GB, Binks MJ. The epidemiology of chronic suppurative lung disease and bronchiectasis in children and adolescents. Front Pediatr 2017; 5: 27
  • 19 Chalmers JD, Chang AB, Chotirmall SH, Dhar R, McShane PJ. Bronchiectasis. Nat Rev Dis Primers 2018; 4 (01) 45
  • 20 Gokdemir Y, Hamzah A, Erdem E. et al. Quality of life in children with non-cystic-fibrosis bronchiectasis. Respiration 2014; 88 (01) 46-51
  • 21 Noone PG, Leigh MW, Sannuti A. et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med 2004; 169 (04) 459-467
  • 22 Coren ME, Meeks M, Morrison I, Buchdahl RM, Bush A. Primary ciliary dyskinesia: age at diagnosis and symptom history. Acta Paediatr 2002; 91 (06) 667-669
  • 23 Mullowney T, Manson D, Kim R, Stephens D, Shah V, Dell S. Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics 2014; 134 (06) 1160-1166
  • 24 Goutaki M, Meier AB, Halbeisen FS. et al. Clinical manifestations in primary ciliary dyskinesia: systematic review and meta-analysis. Eur Respir J 2016; 48 (04) 1081-1095
  • 25 Lucas JS, Burgess A, Mitchison HM, Moya E, Williamson M, Hogg C. National PCD Service, UK. Diagnosis and management of primary ciliary dyskinesia. Arch Dis Child 2014; 99 (09) 850-856
  • 26 Sagel SD, Davis SD, Campisi P, Dell SD. Update of respiratory tract disease in children with primary ciliary dyskinesia. Proc Am Thorac Soc 2011; 8 (05) 438-443
  • 27 Sommer JU, Schäfer K, Omran H. et al. ENT manifestations in patients with primary ciliary dyskinesia: prevalence and significance of otorhinolaryngologic co-morbidities. European archives of oto-rhino-laryngology: Official Journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology -. Head Neck Surg 2011; 268 (03) 383-388
  • 28 Andersen TN, Alanin MC, von Buchwald C, Nielsen LH. A longitudinal evaluation of hearing and ventilation tube insertion in patients with primary ciliary dyskinesia. Int J Pediatr Otorhinolaryngol 2016; 89: 164-168
  • 29 Prulière-Escabasse V, Coste A, Chauvin P. et al. Otologic features in children with primary ciliary dyskinesia. Arch Otolaryngol Head Neck Surg 2010; 136 (11) 1121-1126
  • 30 Campbell R. Managing upper respiratory tract complications of primary ciliary dyskinesia in children. Curr Opin Allergy Clin Immunol 2012; 12 (01) 32-38
  • 31 Schneider H, Brueckner M. Of mice and men: dissecting the genetic pathway that controls left-right asymmetry in mice and humans. Am J Med Genet 2000; 97 (04) 258-270
  • 32 Best S, Shoemark A, Rubbo B. et al. Risk factors for situs defects and congenital heart disease in primary ciliary dyskinesia. Thorax 2019; 74 (02) 203-205
  • 33 Castleman VH, Romio L, Chodhari R. et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet 2009; 84 (02) 197-209
  • 34 Onoufriadis A, Shoemark A, Schmidts M. et al; UK10K. Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects. Hum Mol Genet 2014; 23 (13) 3362-3374
  • 35 Olbrich H, Schmidts M, Werner C. et al; UK10K Consortium. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet 2012; 91 (04) 672-684
  • 36 Boon M, Wallmeier J, Ma L. et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun 2014; 5 (01) 4418
  • 37 Wallmeier J, Al-Mutairi DA, Chen CT. et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Genet 2014; 46 (06) 646-651
  • 38 Vanaken GJ, Bassinet L, Boon M. et al. Infertility in an adult cohort with primary ciliary dyskinesia: phenotype-gene association. Eur Respir J 2017; 50 (05) 1700314
  • 39 Aprea I, Nöthe-Menchen T, Dougherty GW. et al. Motility of efferent duct cilia aids passage of sperm cells through the male reproductive system. Mol Hum Reprod 2021; 27 (03) gaab009
  • 40 Antony D, Becker-Heck A, Zariwala MA. et al; Uk10k. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat 2013; 34 (03) 462-472
  • 41 Raidt J, Werner C, Menchen T. et al. Ciliary function and motor protein composition of human fallopian tubes. Hum Reprod 2015; 30 (12) 2871-2880
  • 42 Wallmeier J, Frank D, Shoemark A. et al. De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am J Hum Genet 2019; 105 (05) 1030-1039
  • 43 Bukowy-Bieryłło Z, Ziętkiewicz E, Loges NT. et al. RPGR mutations might cause reduced orientation of respiratory cilia. Pediatr Pulmonol 2013; 48 (04) 352-363
  • 44 Budny B, Chen W, Omran H. et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum Genet 2006; 120 (02) 171-178
  • 45 Gardner LE, Horton KL, Shoemark A. et al. Proceedings of the 4(th) BEAT-PCD Conference and 5(th) PCD Training School. BMC Proceedings 2020; 14 (Suppl. 08) 7
  • 46 Bukowy-Bieryllo Z, Rabiasz A, Dabrowski M. et al. Truncating mutations in exons 20 and 21 of OFD1 can cause primary ciliary dyskinesia without associated syndromic symptoms. J Med Genet 2019; 56 (11) 769-777
  • 47 Halbeisen FS, Goutaki M, Spycher BD. et al. Lung function in patients with primary ciliary dyskinesia: an iPCD Cohort study. Eur Respir J 2018; 52 (02) 1801040
  • 48 Goutaki M, Maurer E, Halbeisen FS. et al; PCD Italian Consortium, Swiss PCD Group, French Reference Centre for Rare Lung Diseases, Genetic Disorders of Mucociliary Clearance Consortium. The international primary ciliary dyskinesia cohort (iPCD Cohort): methods and first results. Eur Respir J 2017; 49 (01) 1601181
  • 49 Olveira C, Padilla A, Martínez-García M-Á. et al. Etiology of bronchiectasis in a cohort of 2047 patients. An Analysis of the Spanish Historical Bronchiectasis Registry. Arch Bronconeumol 2017; 53 (07) 366-374 (English Edition)
  • 50 Eden E, Choate R, Barker A. et al. The clinical features of bronchiectasis associated with alpha-1 antitrypsin deficiency, common variable immunodeficiency and primary ciliary dyskinesia--results from the U.S. Bronchiectasis Research Registry. Chronic Obstr Pulm Dis (Miami) 2019; 6 (02) 145-153
  • 51 Shoemark A, Dell S, Shapiro A, Lucas JS. ERS and ATS diagnostic guidelines for primary ciliary dyskinesia: similarities and differences in approach to diagnosis. Eur Respir J 2019; 54 (03) 1901066
  • 52 Lucas JS, Barbato A, Collins SA. et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49 (01) 1601090
  • 53 Behan L, Dimitrov BD, Kuehni CE. et al. PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur Respir J 2016; 47 (04) 1103-1112
  • 54 Rademacher J, Buck A, Schwerk N. et al. Nasal nitric oxide measurement and a modified PICADAR score for the screening of primary ciliary dyskinesia in adults with bronchiectasis. Pneumologie 2017; 71 (08) 543-548
  • 55 Leigh MW, Ferkol TW, Davis SD. et al. Clinical features and associated likelihood of primary ciliary dyskinesia in children and adolescents. Ann Am Thorac Soc 2016; 13 (08) 1305-1313
  • 56 Shapiro AJ, Davis SD, Ferkol T. et al; Genetic Disorders of Mucociliary Clearance Consortium. Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest 2014; 146 (05) 1176-1186
  • 57 Knowles MR, Ostrowski LE, Leigh MW. et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med 2014; 189 (06) 707-717
  • 58 Shoemark A, Moya E, Hirst RA. et al. High prevalence of CCDC103 p.His154Pro mutation causing primary ciliary dyskinesia disrupts protein oligomerisation and is associated with normal diagnostic investigations. Thorax 2018; 73 (02) 157-166
  • 59 Fassad MR, Shoemark A, Legendre M. et al. Mutations in outer dynein arm heavy chain DNAH9 cause motile cilia defects and situs inversus. Am J Hum Genet 2018; 103 (06) 984-994
  • 60 Rubbo B, Shoemark A, Jackson CL. et al; National PCD Service, UK. Accuracy of high-speed video analysis to diagnose primary ciliary dyskinesia. Chest 2019; 155 (05) 1008-1017
  • 61 Hirst RA, Jackson CL, Coles JL. et al. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid. PLoS One 2014; 9 (02) e89675
  • 62 Jorissen M, Willems T, Van der Schueren B, Verbeken E. Secondary ciliary dyskinesia is absent after ciliogenesis in culture. Acta Otorhinolaryngol Belg 2000; 54 (03) 333-342
  • 63 Shapiro AJ, Davis SD, Polineni D. et al; American Thoracic Society Assembly on Pediatrics. Diagnosis of primary ciliary dyskinesia. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2018; 197 (12) e24-e39
  • 64 Shoemark A, Boon M, Brochhausen C. et al; representing the BEAT-PCD Network Guideline Development Group. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM Criteria). Eur Respir J 2020; 55 (04) 1900725
  • 65 Boon M, Smits A, Cuppens H. et al. Primary ciliary dyskinesia: critical evaluation of clinical symptoms and diagnosis in patients with normal and abnormal ultrastructure. Orphanet J Rare Dis 2014; 9: 11
  • 66 Knowles MR, Leigh MW, Carson JL. et al; Genetic Disorders of Mucociliary Clearance Consortium. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax 2012; 67 (05) 433-441
  • 67 Shoemark A, Burgoyne T, Kwan R. et al. Primary ciliary dyskinesia with normal ultrastructure: three-dimensional tomography detects absence of DNAH11. Eur Respir J 2018; 51 (02) 1701809
  • 68 Dougherty GW, Loges NT, Klinkenbusch JA. et al. DNAH11 localization in the proximal region of respiratory cilia defines distinct outer dynein arm complexes. Am J Respir Cell Mol Biol 2016; 55 (02) 213-224
  • 69 Frommer A, Hjeij R, Loges NT. et al. Immunofluorescence analysis and diagnosis of primary ciliary dyskinesia with radial spoke defects. Am J Respir Cell Mol Biol 2015; 53 (04) 563-573
  • 70 Fliegauf M, Olbrich H, Horvath J. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 2005; 171 (12) 1343-1349
  • 71 Baz-Redón N, Rovira-Amigo S, Fernández-Cancio M. et al. Immunofluorescence analysis as a diagnostic tool in a Spanish cohort of patients with suspected primary ciliary dyskinesia. J Clin Med 2020; 9 (11) E3603
  • 72 Olcese C, Patel MP, Shoemark A. et al; UK10K Rare Group. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 2017; 8: 14279
  • 73 Paff T, Loges NT, Aprea I. et al. Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am J Hum Genet 2017; 100 (01) 160-168
  • 74 Wallmeier J, Nielsen KG, Kuehni CE. et al. Motile ciliopathies. Nat Rev Dis Primers 2020; 6 (01) 76
  • 75 Fassad MR, Patel MP, Shoemark A. et al. Clinical utility of NGS diagnosis and disease stratification in a multiethnic primary ciliary dyskinesia cohort. J Med Genet 2020; 57 (05) 322-330
  • 76 Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. Lancet Respir Med 2020; 8 (02) 202-216
  • 77 Shoemark A, Rubbo B, Legendre M. et al. Topological data analysis reveals genotype-phenotype relationships in primary ciliary dyskinesia. Eur Respir J 2021; •••: 2002359
  • 78 Sigg MA, Menchen T, Lee C. et al. Evolutionary proteomics uncovers ancient associations of cilia with signaling pathways. Dev Cell 2017; 43 (06) 744-762.e11
  • 79 Ta-Shma A, Hjeij R, Perles Z. et al. Homozygous loss-of-function mutations in MNS1 cause laterality defects and likely male infertility. PLoS Genet 2018; 14 (08) e1007602
  • 80 Silva E, Betleja E, John E. et al. Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of left-right asymmetry. Mol Biol Cell 2016; 27 (01) 48-63
  • 81 Kobbernagel HE, Buchvald FF, Haarman EG. et al. Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): a multicentre, double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir Med 2020; 8 (05) 493-505
  • 82 Paff T, Daniels JM, Weersink EJ, Lutter R, Vonk Noordegraaf A, Haarman EG. A randomised controlled trial on the effect of inhaled hypertonic saline on quality of life in primary ciliary dyskinesia. Eur Respir J 2017; 49 (02) 1601770
  • 83 Barbato A, Frischer T, Kuehni CE. et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J 2009; 34 (06) 1264-1276
  • 84 Schofield LM, Duff A, Brennan C. Airway clearance techniques for primary ciliary dyskinesia; is the cystic fibrosis literature portable?. Paediatr Respir Rev 2018; 25: 73-77
  • 85 Desai M, Weller PH, Spencer DA. Clinical benefit from nebulized human recombinant DNase in Kartagener's syndrome. Pediatr Pulmonol 1995; 20 (05) 307-308
  • 86 El-Abiad NM, Clifton S, Nasr SZ. Long-term use of nebulized human recombinant DNase1 in two siblings with primary ciliary dyskinesia. Respir Med 2007; 101 (10) 2224-2226
  • 87 Wilkinson M, Sugumar K, Milan SJ, Hart A, Crockett A, Crossingham I. Mucolytics for bronchiectasis. Cochrane Database Syst Rev 2014; 2014 (05) CD001289
  • 88 O'Donnell AE, Barker AF, Ilowite JS, Fick RB. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group. Chest 1998; 113 (05) 1329-1334
  • 89 Shapiro AJ, Zariwala MA, Ferkol T. et al; Genetic Disorders of Mucociliary Clearance Consortium. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol 2016; 51 (02) 115-132
  • 90 Frija-Masson J, Bassinet L, Honoré I. et al. Clinical characteristics, functional respiratory decline and follow-up in adult patients with primary ciliary dyskinesia. Thorax 2017; 72 (02) 154-160
  • 91 Altenburg J, de Graaff CS, Stienstra Y. et al. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 2013; 309 (12) 1251-1259
  • 92 Pedersen ESL, Collaud ENR, Mozun R. et al. COVID-PCD: a participatory research study on the impact of COVID-19 in people with primary ciliary dyskinesia. ERJ Open Res 2021; 7 (01) 00843-02020
  • 93 Kouis P, Goutaki M, Halbeisen FS. et al; Israeli PCD Consortium, Italian PCD Consortium, Swiss PCD Group, French Reference Centre for Rare Lung Diseases, PCD Italian Consortium, French Reference Centre for Rare Lung Diseases. Prevalence and course of disease after lung resection in primary ciliary dyskinesia: a cohort & nested case-control study. Respir Res 2019; 20 (01) 212
  • 94 Morgan LC, Birman CS. The impact of primary ciliary dyskinesia on the upper respiratory tract. Paediatr Respir Rev 2016; 18: 33-38
  • 95 Orlandi RR, Smith TL, Marple BF. et al. Update on evidence-based reviews with recommendations in adult chronic rhinosinusitis. Int Forum Allergy Rhinol 2014; 4 (Suppl. 01) S1-S15
  • 96 Mygind N, Pedersen M. Nose-, sinus- and ear-symptoms in 27 patients with primary ciliary dyskinesia. Eur J Respir Dis Suppl 1983; 127: 96-101
  • 97 Parsons DS, Greene BA. A treatment for primary ciliary dyskinesia: efficacy of functional endoscopic sinus surgery. Laryngoscope 1993; 103 (11 Pt 1): 1269-1272
  • 98 Alanin MC, Aanaes K, Høiby N. et al. Sinus surgery can improve quality of life, lung infections, and lung function in patients with primary ciliary dyskinesia. Int Forum Allergy Rhinol 2017; 7 (03) 240-247
  • 99 Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci 2020; 77 (11) 2029-2048
  • 100 Lucas JS, Alanin MC, Collins S. et al. Clinical care of children with primary ciliary dyskinesia. Expert Rev Respir Med 2017; 11 (10) 779-790
  • 101 Maglione M, Montella S, Santamaria F. Chest CTs in primary ciliary dyskinesia: not too few, but not too many!. Pediatr Pulmonol 2012; 47 (08) 733-735
  • 102 Irving S, Dixon M, Fassad MR. et al. Primary ciliary dyskinesia due to microtubular defects is associated with worse lung clearance index. Lung 2018; 196 (02) 231-238
  • 103 Irving S, Carr S, Hogg C, Loebinger M, Shoemark A, Bush A. Lung clearance index (LCI) is stable in most primary ciliary dyskinesia (PCD) patients managed in a specialist centre: a pilot study. Lung 2017; 195 (04) 441-443
  • 104 Nyilas S, Bauman G, Pusterla O. et al. Structural and functional lung impairment in primary ciliary dyskinesia. assessment with magnetic resonance imaging and multiple breath washout in comparison to spirometry. Ann Am Thorac Soc 2018; 15 (12) 1434-1442
  • 105 Nyilas S, Schlegtendal A, Yammine S, Casaulta C, Latzin P, Koerner-Rettberg C. Further evidence for an association between LCI and FEV1 in patients with PCD. Thorax 2015; 70 (09) 896
  • 106 Singer F, Schlegtendal A, Nyilas S, Vermeulen F, Boon M, Koerner-Rettberg C. Lung clearance index predicts pulmonary exacerbations in individuals with primary ciliary dyskinesia: a multicentre cohort study. Thorax 2021; 76: 681-688
  • 107 Hoang-Thi T-N, Revel M-P, Burgel P-R. et al. Automated computed tomographic scoring of lung disease in adults with primary ciliary dyskinesia. BMC Pulm Med 2018; 18 (01) 194
  • 108 Magnin ML, Cros P, Beydon N. et al. Longitudinal lung function and structural changes in children with primary ciliary dyskinesia. Pediatr Pulmonol 2012; 47 (08) 816-825
  • 109 Rademacher J, Dettmer S, Fuge J. et al. Derivation und Validation of a Primary Ciliary Dyskinesia Computed Tomography (PCD-CT) Score in patients with bronchiectasis. Respiration 2021; 1-11
  • 110 Montella S, Santamaria F, Salvatore M. et al. Assessment of chest high-field magnetic resonance imaging in children and young adults with noncystic fibrosis chronic lung disease: comparison to high-resolution computed tomography and correlation with pulmonary function. Invest Radiol 2009; 44 (09) 532-538
  • 111 Marthin JK, Petersen N, Skovgaard LT, Nielsen KG. Lung function in patients with primary ciliary dyskinesia: a cross-sectional and 3-decade longitudinal study. Am J Respir Crit Care Med 2010; 181 (11) 1262-1268
  • 112 Davis SD, Ferkol TW, Rosenfeld M. et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med 2015; 191 (03) 316-324
  • 113 Goutaki M, Halbeisen FS, Spycher BD. et al; PCD Israeli Consortium, Swiss PCD Group, French Reference Centre for Rare Lung Diseases. Growth and nutritional status, and their association with lung function: a study from the international Primary Ciliary Dyskinesia Cohort. Eur Respir J 2017; 50 (06) 1701659
  • 114 Goutaki M, Crowley S, Dehlink E. et al; BEAT-PCD Clinical Research Collaboration. The BEAT-PCD (Better Experimental Approaches to Treat Primary Ciliary Dyskinesia) Clinical Research Collaboration. Eur Respir J 2021; 57 (02) 2004601
  • 115 Lucas JS, Gahleitner F, Amorim A. et al. Pulmonary exacerbations in patients with primary ciliary dyskinesia: an expert consensus definition for use in clinical trials. ERJ Open Res 2019; 5 (01) 00147-02018