Subscribe to RSS
DOI: 10.1055/s-0040-1721756
Photo-Controlled Adhesives Based on Photoinduced Solid-to-Liquid Transition of an Azobenzene Compound
Funding Information S.W. thanks the National Ten Thousand Talents Program and Natural Science Foundation of Anhui Province (No. 1908085MB38); Y.L. thanks the National Natural Science Foundation of China (No. 21864010).
Abstract
The development of photo-controlled adhesives can overcome the problems associated with daily lives and industrial applications. Adhesion is a multidiscipline field of engineering, physics, and chemistry. The solid-to-liquid transformation of light-controlled adhesives can be used for direct bonding onto diverse surfaces. Here, a photoresponsive azobenzene compound is developed for photo-controlled adhesion. The azobenzene compound 4, 4'-hexyl diacrylate-3-methylazobenzene (M1) exhibits photoinduced solid-to-liquid transition due to trans–cis photoisomerization. The prepolymer coating based on the azobenzene compound M1 is prepared on an adhesive surface. After UV irradiation, the solid coating was quickly transformed into liquid for adhesion. This photo-controlled adhesive has strong adhesion to different surfaces.
Key words
azobenzenes - photoinduced solid-to-liquid transition - prepolymer coating - photo-controlled adhesivesSupporting Information
Supporting Information for this article is available online at https://doi.org/10.1055/s-0040-1721756.
Publication History
Received: 02 October 2020
Accepted: 19 November 2020
Article published online:
28 December 2020
© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Torres F.-G, Troncoso O.-P, Cavalie F. Mater. Sci. Eng., Proc. Conf. 2014; 34: 341
- 2a Rina M, Kou O, Takuzo A. J. Am. Chem. Soc. 2017; 139: 10072
- 2b Yan Z, Luo Y, Deng Y, Schork J. J. Appl. Polym. Sci. 2004; 91: 347
- 2c Wang Z, Yu Y, Li Y, Yang L, Zhao Y, Liu G, Wei Y, Wang X, Tao L. Polym. Chem. 2017; 8: 5490
- 2d Wilpiszewska K, Czech Z. J. Polym. Environ. 2018; 26: 1453
- 3a Vinícius G.-M, Geovana B, Nei D, Moara B.-S, Rafael B.-Z, Marcus S. ACS Sustainable Chem. Eng. 2017; 5: 8464
- 3b Jonuzaj S, Cui J, Adjiman C.-S. Comput. Chem. Eng. 2019; 130: 0098
- 3c Kozakiewicz J, Kujawa-Penczek B, Penczek P, Krzysztof P. J. Appl. Polym. Sci. 1981; 26: 3699
- 4a Zhang C, Yu L, Ferdosian F, Vijayaraghavan S, Mesnager J, Jollet V, Zhao B. Ind. Eng. Chem. Prod. Res. Dev. 2018; 57: 16318
- 4b Molina-Gutiérrez S, Li W.-S.-J, Perrin R, Ladmiral V, Bongiovanni R, Caillol S, Lacroix-Desmazes P. Biomacromolecules 2020; 21: 4514
- 4c Zhou M, Zhai S, Song T, Zhao H, Fan Z, Ge F, Zhao Y, Xu Bi, Cai Z. J. Inorg. Organomet. Polym. Mater. 2020; DOI: 10.1007/s10904-020-01659-7.
- 5 Zhao Y, Wu Y, Wang L, Zhang M, Chen X, Liu M, Fan J, Liu Y, Zhou F, Wang Z. Nat. Commun. 2017; 8: 2218
- 6 Wang C, Li P, Zhang S, Zhang G, Tan S, Wu Y, Watanabe M. Macromolecules 2020; 53: 4901
- 7 Zhou Y, Chen M, Ban Q, Zhang Z, Shuang S, Koynov K, Butt H.-G, Kong J, Wu S. ACS Macro Lett. 2019; 8: 968
-
8
Fregoni J,
Granucci G,
Coccia E,
Persico M,
Corni S.
Nat. Commun. 2018; 9: 1
- 9 Weis P, Wang D, Wu S. Macromolecules 2016; 49: 6368
- 10 Kravchenko A, Shevchenko A, Ovchinnikov V, Priimagi A, Kaivola M. Adv. Mater. 2011; 23: 4174
- 11 Saydjari A.-K, Weis P, Wu S. Adv. Energy Mater. 2017; 7: 1601622
- 12 Lv J.-A, Liu Y, Wei J, Chen Y, Qin L, Yu Y. Nature 2016; 537: 179
- 13 Norikane Y, Hirai Y, Yoshida M. Chem. Commun. 2011; 47: 1770
- 14 Akiyama H, Yoshida M. Adv. Mater. 2012; 24: 2353
- 15 Xu W, Sun S, Wu S. Angew. Chem. Int. Ed. 2019; 58: 9712
- 16 Yamauchi M, Yokoyama K, Aratani N, Yamada H, Masuo S. Angew. Chem. Int. Ed. 2019; 58: 14173
- 17 Norikane Y, Uchida E, Tanaka S, Fujiwara K, Koyama E, Azumi R, Akiyama H, Kihara H, Yoshida M. Org. Lett. 2014; 16: 5012
- 18 Xu J, Niu B, Guo S, Zhao X, Li X, Peng J, Deng W, Wu S, Liu Y. Polymer 2020; 12: 901
- 19 Yue Y, Azumi R, Norikane Y. ChemPhotoChem 2020; DOI: 10.1002/cptc.202000151.
- 20 Weis P, Tian W, Wu S, Huang S, Auernhammer G.-K, Koynov K, Butt H.-G, Wu S. Chem. Eur. J. 2018; 24: 6494
- 21 Yue Y, Norikane Y, Azumi R, Koyama E. Nat. Commun. 2018; 9: 3234
- 22 Bandara H.-M.-D, Burdette S.-C. Chem. Soc. Rev. 2012; 41: 1809
- 23 Zhou H, Xue C, Weis P, Suzuki Y, Huang S, Koynov K, Auernhammer G.-K, Berger R, Butt HJ, Wu S. Nat. Chem. 2017; 9: 145
- 24 Akiyama H, Kanazawa S, Okuyama Y, Yoshida M, Kihara H, Nagai H, Norikane Y, Azumi R. ACS Appl. Mater. Interfaces 2014; 6: 7933
- 25 Ito S, Akiyama H, Sekizawa R, Mori M, Fukata T, Yoshida M, Kihara H. J. Polym. Sci., Part A: Polym. Chem. 2019; 57: 806
- 26 Wu Z, Ji C, Zhao X, Han Y, Müllen K, Pan K, Yin M. J. Am. Chem. Soc. 2019; 141: 7385
- 27 Xu G, Li S, Liu C, Wu S. Chem. Asian J. 2020; 15: 547
- 28 Ito S, Akiyama H, Mori M, Yoshida M, Kihara H. Macromol. Chem. Phys. 2019; 220: 1900105
- 29 Raftery D, Smyth M.-R, Leonard R.-G. Int. J. Adhes. Adhes. 1997; 17: 349