CC BY 4.0 · Organic Materials 2020; 02(04): 362-366
DOI: 10.1055/s-0040-1721756
Original Article

Photo-Controlled Adhesives Based on Photoinduced Solid-to-Liquid Transition of an Azobenzene Compound

a   College of Materials Science and Engineering, Guilin University of Technology, Guilin 541000, China
b   CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 260026, China
,
a   College of Materials Science and Engineering, Guilin University of Technology, Guilin 541000, China
b   CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 260026, China
c   Max Planck Institute for Polymer Research, 55128 Mainz, Germany
d   Department of Chemical Engineering, Tsinghua University, Beijing, China
,
a   College of Materials Science and Engineering, Guilin University of Technology, Guilin 541000, China
,
a   College of Materials Science and Engineering, Guilin University of Technology, Guilin 541000, China
,
Si Wu
a   College of Materials Science and Engineering, Guilin University of Technology, Guilin 541000, China
b   CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 260026, China
c   Max Planck Institute for Polymer Research, 55128 Mainz, Germany
› Author Affiliations
Funding Information S.W. thanks the National Ten Thousand Talents Program and Natural Science Foundation of Anhui Province (No. 1908085MB38); Y.L. thanks the National Natural Science Foundation of China (No. 21864010).


Abstract

The development of photo-controlled adhesives can overcome the problems associated with daily lives and industrial applications. Adhesion is a multidiscipline field of engineering, physics, and chemistry. The solid-to-liquid transformation of light-controlled adhesives can be used for direct bonding onto diverse surfaces. Here, a photoresponsive azobenzene compound is developed for photo-controlled adhesion. The azobenzene compound 4, 4'-hexyl diacrylate-3-methylazobenzene (M1) exhibits photoinduced solid-to-liquid transition due to transcis photoisomerization. The prepolymer coating based on the azobenzene compound M1 is prepared on an adhesive surface. After UV irradiation, the solid coating was quickly transformed into liquid for adhesion. This photo-controlled adhesive has strong adhesion to different surfaces.

Supporting Information

Supporting Information for this article is available online at https://doi.org/10.1055/s-0040-1721756.


Supporting Information



Publication History

Received: 02 October 2020

Accepted: 19 November 2020

Article published online:
28 December 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Torres F.-G, Troncoso O.-P, Cavalie F. Mater. Sci. Eng., Proc. Conf. 2014; 34: 341
    • 2a Rina M, Kou O, Takuzo A. J. Am. Chem. Soc. 2017; 139: 10072
    • 2b Yan Z, Luo Y, Deng Y, Schork J. J. Appl. Polym. Sci. 2004; 91: 347
    • 2c Wang Z, Yu Y, Li Y, Yang L, Zhao Y, Liu G, Wei Y, Wang X, Tao L. Polym. Chem. 2017; 8: 5490
    • 2d Wilpiszewska K, Czech Z. J. Polym. Environ. 2018; 26: 1453
    • 3a Vinícius G.-M, Geovana B, Nei D, Moara B.-S, Rafael B.-Z, Marcus S. ACS Sustainable Chem. Eng. 2017; 5: 8464
    • 3b Jonuzaj S, Cui J, Adjiman C.-S. Comput. Chem. Eng. 2019; 130: 0098
    • 3c Kozakiewicz J, Kujawa-Penczek B, Penczek P, Krzysztof P. J. Appl. Polym. Sci. 1981; 26: 3699
    • 4a Zhang C, Yu L, Ferdosian F, Vijayaraghavan S, Mesnager J, Jollet V, Zhao B. Ind. Eng. Chem. Prod. Res. Dev. 2018; 57: 16318
    • 4b Molina-Gutiérrez S, Li W.-S.-J, Perrin R, Ladmiral V, Bongiovanni R, Caillol S, Lacroix-Desmazes P. Biomacromolecules 2020; 21: 4514
    • 4c Zhou M, Zhai S, Song T, Zhao H, Fan Z, Ge F, Zhao Y, Xu Bi, Cai Z. J. Inorg. Organomet. Polym. Mater. 2020; DOI: 10.1007/s10904-020-01659-7.
  • 5 Zhao Y, Wu Y, Wang L, Zhang M, Chen X, Liu M, Fan J, Liu Y, Zhou F, Wang Z. Nat. Commun. 2017; 8: 2218
  • 6 Wang C, Li P, Zhang S, Zhang G, Tan S, Wu Y, Watanabe M. Macromolecules 2020; 53: 4901
  • 7 Zhou Y, Chen M, Ban Q, Zhang Z, Shuang S, Koynov K, Butt H.-G, Kong J, Wu S. ACS Macro Lett. 2019; 8: 968
  • 8 Fregoni J, Granucci G, Coccia E, Persico M, Corni S. Nat. Commun. 2018; 9: 1
  • 9 Weis P, Wang D, Wu S. Macromolecules 2016; 49: 6368
  • 10 Kravchenko A, Shevchenko A, Ovchinnikov V, Priimagi A, Kaivola M. Adv. Mater. 2011; 23: 4174
  • 11 Saydjari A.-K, Weis P, Wu S. Adv. Energy Mater. 2017; 7: 1601622
  • 12 Lv J.-A, Liu Y, Wei J, Chen Y, Qin L, Yu Y. Nature 2016; 537: 179
  • 13 Norikane Y, Hirai Y, Yoshida M. Chem. Commun. 2011; 47: 1770
  • 14 Akiyama H, Yoshida M. Adv. Mater. 2012; 24: 2353
  • 15 Xu W, Sun S, Wu S. Angew. Chem. Int. Ed. 2019; 58: 9712
  • 16 Yamauchi M, Yokoyama K, Aratani N, Yamada H, Masuo S. Angew. Chem. Int. Ed. 2019; 58: 14173
  • 17 Norikane Y, Uchida E, Tanaka S, Fujiwara K, Koyama E, Azumi R, Akiyama H, Kihara H, Yoshida M. Org. Lett. 2014; 16: 5012
  • 18 Xu J, Niu B, Guo S, Zhao X, Li X, Peng J, Deng W, Wu S, Liu Y. Polymer 2020; 12: 901
  • 19 Yue Y, Azumi R, Norikane Y. ChemPhotoChem 2020; DOI: 10.1002/cptc.202000151.
  • 20 Weis P, Tian W, Wu S, Huang S, Auernhammer G.-K, Koynov K, Butt H.-G, Wu S. Chem. Eur. J. 2018; 24: 6494
  • 21 Yue Y, Norikane Y, Azumi R, Koyama E. Nat. Commun. 2018; 9: 3234
  • 22 Bandara H.-M.-D, Burdette S.-C. Chem. Soc. Rev. 2012; 41: 1809
  • 23 Zhou H, Xue C, Weis P, Suzuki Y, Huang S, Koynov K, Auernhammer G.-K, Berger R, Butt HJ, Wu S. Nat. Chem. 2017; 9: 145
  • 24 Akiyama H, Kanazawa S, Okuyama Y, Yoshida M, Kihara H, Nagai H, Norikane Y, Azumi R. ACS Appl. Mater. Interfaces 2014; 6: 7933
  • 25 Ito S, Akiyama H, Sekizawa R, Mori M, Fukata T, Yoshida M, Kihara H. J. Polym. Sci., Part A: Polym. Chem. 2019; 57: 806
  • 26 Wu Z, Ji C, Zhao X, Han Y, Müllen K, Pan K, Yin M. J. Am. Chem. Soc. 2019; 141: 7385
  • 27 Xu G, Li S, Liu C, Wu S. Chem. Asian J. 2020; 15: 547
  • 28 Ito S, Akiyama H, Mori M, Yoshida M, Kihara H. Macromol. Chem. Phys. 2019; 220: 1900105
  • 29 Raftery D, Smyth M.-R, Leonard R.-G. Int. J. Adhes. Adhes. 1997; 17: 349