CC BY-NC-ND 4.0 · SynOpen 2021; 05(04): 327-334
DOI: 10.1055/s-0040-1719861
paper

Oxidative Annulation of Diphenylpropanamides via In Situ Hypervalent Iodine-Promoted Intramolecular C–N/C–O Bond Formation

Zhi-Peng Liang
,
Ying-Xin Yu
,
Yuan-Yuan Sun
,
Yang Wang
,
Zheng-Guang Wu
We are grateful for generous financial support from the National Natural Science Foundation of China (22005158), the Nantong University, Program of High-level Talents (135420608048) and the Large Instruments Open Foundation of Nantong University; Nantong Fundamental Science Research Program (JC2021070).


Abstract

An aryl iodide catalyzed intramolecular oxidative transformation of diphenylpropanamide derivatives is described that can readily afford the C–N/C–O coupling products in a single step. The speed of the 1,3-aryl iodide migration process determines the diversity of target compound generation in this reaction. This straightforward approach can be performed with the use of inexpensive and readily available catalyst, transition-metal-free, mild conditions and good functional group tolerance.

Supporting Information



Publication History

Received: 30 October 2021

Accepted after revision: 23 November 2021

Article published online:
21 December 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Ochiai M, Takeuchi Y, Katayama T, Sueda T, Miyamoto K. J. Am. Chem. Soc. 2005; 127: 12244
    • 2b Dohi T, Maruyama A, Yoshimura M, Morimoto K, Tohma H, Kita Y. Angew. Chem. Int. Ed. 2005; 44: 6193
    • 2c Thottumkara AP, Bowsher MS, Vinod TK. Org. Lett. 2005; 7: 2933
    • 3a Uyanik M, Sasakura N, Mizuno M, Ishihara K. ACS Catal. 2017; 7: 872
    • 3b Jacquemot G, Menard M.-A, L’Homme C, Canesi S. Chem. Sci. 2013; 4: 1287
    • 3c Dohi T, Takenaga N, Nakae T, Toyoda Y, Yamasaki M, Shiro M, Fujioka H, Maruyama A, Kita Y. J. Am. Chem. Soc. 2013; 135: 4558
    • 3d Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2013; 52: 9215
    • 3e Desjardins S, Andrez J.-C, Canesi SA. Org. Lett. 2011; 13: 3406
    • 3f Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
    • 3g Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
    • 3h Ousmer M, Braun NA, Bavoux C, Perrin M, Ciufolini MA. J. Am. Chem. Soc. 2001; 123: 7534
    • 4a Wata C, Hashimoto T. J. Am. Chem. Soc. 2021; 143: 1745
    • 4b Sharma HA, Mennie KM, Kwan EE, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 16090
    • 4c Levin MD, Ovian JM, Read JA, Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 14831
    • 4d Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2020; 59: 15069
    • 4e Mennie KM, Banik SM, Reichert EC, Jacobsen EN. J. Am. Chem. Soc. 2018; 140: 4797
    • 4f Banik SM, Medley JW, Jacobsen EN. Science 2016; 353: 51
    • 4g Haubenreisser S, Wöste TH, Martínez C, Ishihara K, Muñiz K. Angew. Chem. Int. Ed. 2016; 55: 413
    • 4h Woerly EM, Banik SM, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 13858
    • 4i Banik SM, Medley JW, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 5000
    • 5a Pluta R, Krach PE, Cavallo L, Falvienne L, Rueping M. ACS Catal. 2018; 8: 2582
    • 5b Levitre G, Dumoulin A, Retailleau P, Panossian A, Leroux FR, Masson G. J. Org. Chem. 2017; 82: 11877
    • 5c Gomes LF. R, Veiros LF, Maulide N, Afonso CA. M. Chem. Eur. J. 2015; 21: 1449
    • 5d Jia Z, Galvez E, Sebastian RM, Pleixats R, Alvarez-Larena A, Martin E, Vallribera A, Shafir A. Angew. Chem. Int. Ed. 2014; 53: 11298
    • 5e Wu H, He Y.-P, Xu L, Zhang D.-Y, Gong L.-Z. Angew. Chem. Int. Ed. 2014; 53: 3466
    • 5f Richardson RD, Page TK, Altermann S, Paradine SM, French AN, Wirth T. Synlett 2007; 538
    • 6a Ding Q, He H, Cai Q. Org. Lett. 2018; 20: 4554
    • 6b Ishiwata Y, Togo H. Tetrahedron Lett. 2009; 50: 5354
    • 7a Zhou T, Qian P.-F, Li J.-Y, Zhou Y.-B, Li H.-C, Chen H.-Y, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 6810
    • 7b Ma W, Liu L.-C, An K, He T, He W. Angew. Chem. Int. Ed. 2021; 60: 4245
    • 7c Li J, Huang C, Wen D, Zheng Q, Tu B, Tu T. Org. Lett. 2021; 23: 687
    • 7d Gong Y, Zhu Z, Qian Q, Tong W, Gong H. Org. Lett. 2021; 23: 1005
    • 7e Pradhan S, Roy S, Banerjee S, De P B, Punniyamurthy T. J. Org. Chem. 2020; 85: 5741
    • 7f He R.-D, Li C.-L, Pan Q.-Q, Guo P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 12481
    • 7g Meng G, Szostak M. Org. Lett. 2016; 18: 796
    • 7h Ge Z.-Y, Xu Q.-M, Fei X.-D, Tang T, Zhu Y.-M, Ji S.-J. J. Org. Chem. 2013; 78: 4524
  • 8 Cheng X.-F, Fei F, Li Y, Hou Y.-M, Zhou X, Wang X.-S. Org. Lett. 2020; 22: 6394
    • 9a Wang Y, Yang M, Sun Y.-Y, Wu Z.-G, Dai H, Li S. Org. Lett. 2021; 23: 8750
    • 9b Sun J, Li G, Zhang G, Cong Y, An X, Zhang-Negrerie D, Du Y. Adv. Synth. Catal. 2018; 360: 2476
    • 9c Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14058
    • 10a Zheng H, Sang Y, Houk KN, Xue X.-S, Cheng J.-P. J. Am. Chem. Soc. 2019; 141: 16046
    • 10b Zhou B, Haj MK, Jacobsen EN, Houk KN, Xue X.-S. J. Am. Chem. Soc. 2018; 140: 15206
    • 10c Pluta R, Krach PE, Cavallo L, Falvienne L, Rueping M. ACS Catal. 2018; 8: 2582
    • 10d Sreenithya A, Patel C, Hadad CM, Sunoj RB. ACS Catal. 2017; 7: 4189
    • 10e Sreenithya A, Sunoj RB. Org. Lett. 2014; 16: 6224