CC BY-NC-ND 4.0 · SynOpen 2021; 05(04): 278-284
DOI: 10.1055/s-0040-1719843
paper

Asymmetric Sequential Michael Addition and Cyclization Reactions of 2-(2-Nitrovinyl)phenols Catalyzed by Bifunctional Amino-Squaramides

Eva Veverková
,
Pavlína Molnosiová
,
This research has been supported by the Slovak Grant Agency VEGA (VEGA 1/0414/16) and Slovak Research and Development Agency under the Contract no. APVV-18-0242.


Abstract

In this work, we describe the Michael addition–cyclization reaction of 2-(2-nitrovinyl)phenol with two different reactive Michael donors, which lead to chiral benzopyran derivatives. Specifically, bifunctional amino-squaramides with one or two chiral units in the side chains were evaluated as catalysts in these transformations. Furthermore, the utility of selected green solvents as reaction media for these processes was also tested. The best result was achieved with methyl-cyclopentanone-2-carboxylate as the Michael donor in ethyl (–)-l-lactate with quinine-based amino-squaramide as catalyst (yield 72%, dr >99:1, ee 99%).

Supporting Information



Publication History

Received: 29 July 2021

Accepted after revision: 26 August 2021

Article published online:
05 October 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 List B, Maruoka K. Asymmetric Organocatalysis, Workbench Edition. Thieme Chemistry; Stuttgart: 2012
  • 2 Dalko PI. Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications. Wiley-VCH; Weinheim: 2013
  • 3 Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
  • 4 Enders D, Grondal C, Huttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
  • 5 Yu X, Wang W. Org. Biomol. Chem. 2008; 6: 2037
  • 6 Pellissier H. Adv. Synth. Catal. 2012; 354: 237
  • 7 Vetica F, de Figueiredo RM, Orsini M, Tofani D, Gasperi T. Synthesis 2015; 47: 2139
  • 8 Tanmoy C, Zhao JC.-G. Adv. Synth. Catal. 2018; 360: 2
  • 9 Reddy Gajulapalli VP, Vinayagam P, Kesavan V. RSC Adv. 2015; 5: 7370
  • 10 Sun P, Meng C.-Y, Zhou F, Li X.-S, Xie J.-W. Tetrahedron 2014; 70: 9330
  • 11 Narayanaperumal S, Rivera DG, Silva RC, Paixão MW. ChemCatChem 2013; 5: 2756
  • 12 Hoashi Y, Yabuta T, Takemoto Y. Tetrahedron Lett. 2004; 45: 9185
  • 13 Hoashi Y, Yabuta T, Yuan P, Miyabe H, Takemoto Y. Tetrahedron 2006; 62: 365
  • 14 Dai Q, Arman H, Zhao JC.-G. Chem. Eur. J. 2013; 19: 1666
  • 15 Cho B, Tan C.-H, Wong MW. Org. Biomol. Chem. 2011; 9: 4550
  • 16 He P, Liu X, Shi J, Lin L, Feng X. Org. Lett. 2011; 13: 936
  • 17 Li C, Shu X, Li L, Zhang G, Jin R, Cheng T, Liu G. Chem. Asian J. 2016; 11: 2072
  • 18 Zhou Y, Liu X.-W, Gu Q, You S.-L. Synlett 2016; 27: 586
  • 19 Sun H.-R, Zhao Q, Yang H, Yang S, Gou B.-B, Chen J, Zhou L. Org. Lett. 2019; 21: 7143
  • 20 Ramachary DB, Madhavachary R, Prasad MS. Org. Biomol. Chem. 2012; 10: 5825
  • 21 Enders D, Urbanietz G, Hahn R, Raabe G. Synthesis 2012; 44: 773
  • 22 Ramachary DB, Sakthidevi R, Shruthi KS. Chem. Eur. J. 2012; 18: 8008
  • 23 Ramachary DB, Shruthi KS. Org. Biomol. Chem. 2014; 12: 4300
  • 24 Andrés JM, Losada J, Maestro A, Rodríguez-Ferrer P, Pedrosa R. J. Org. Chem. 2017; 82: 8444
  • 25 Storer RI, Aciro C, Jones LH. Chem. Soc. Rev. 2011; 40: 2330
  • 26 Alemán J, Parra A, Jiang H, Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
  • 27 Zhao B.-L, Li J.-H, Du D.-M. Chem. Rec. 2017; 17: 994
  • 28 Karahan S, Tanyeli C. Tetrahedron Lett. 2018; 59: 3725
  • 29 Chauhan P, Mahajan S, Kaya U, Hack D, Enders D. Adv. Synth. Catal. 2015; 357: 253
  • 30 Roy TK, Parhi B, Ghorai P. Angew. Chem. Int. Ed. 2018; 57: 9397
  • 31 Xiao Y, Jiang R, Wang Y, Zhou Z. Adv. Synth. Catal. 2018; 360: 1961
  • 32 Zhou Y, Wei Y.-L, Rodriguez J, Coquerel Y. Angew. Chem. Int. Ed. 2019; 58: 456
  • 33 Chaudhari PD, Hong B.-C, Wen C.-L, Lee G.-H. ACS Omega 2019; 4: 655
  • 34 Tang Q.-G, Cai S.-L, Wang C.-C, Lin G.-Q, Sun X.-W. Org. Lett. 2020; 22: 3351
  • 35 Mo Y, Zhang X, Yao Y, Duan C, Ye L, Shi Z, Zhao Z, Li X. J. Org. Chem. 2021; 86: 4448
  • 36 Ni Q, Wang X, Zeng D, Wu Q, Song X. Org. Lett. 2021; 23: 2273
  • 37 Modrocká V, Veverková E, Mečiarová M, Šebesta R. J. Org. Chem. 2018; 83: 13111
  • 38 Modrocká V, Veverková E, Baran R, Šebesta R. Chemistry Select 2018; 3: 1466
  • 39 Peňaška T, Palchykov V, Rakovský E, Addová G, Šebesta R. Eur. J. Org. Chem. 2021; 1693
  • 40 Clarke CJ, Tu W.-C, Levers O, Bröhl A, Hallett JP. Chem. Rev. 2018; 118: 747
  • 41 Pace V, Hoyos P, Castoldi L, Domínguez de María P, Alcántara AR. ChemSusChem 2012; 5: 1369
  • 42 Pereira CS. M, Silva VM. T. M, Rodrigues AE. Green Chem. 2011; 13: 2658
  • 43 Tang S, Zhao H. RSC Adv. 2014; 4: 11251
  • 44 Liu Y, Lu A, Hu K, Wang Y, Song H, Zhou Z, Tang C. Eur. J. Org. Chem. 2013; 4836
  • 45 Albrecht Ł, Dickmeiss G, Acosta FC, Rodríguez-Escrich C, Davis RL, Jørgensen KA. J. Am. Chem. Soc. 2012; 134: 2543
  • 46 Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
  • 47 Baran R, Veverková E, Škvorcová A, Šebesta R. Org. Biomol. Chem. 2013; 11: 7705
  • 48 Tsakos M, Kokotos CG, Kokotos G. Adv. Synth. Catal. 2012; 354: 740
  • 49 Tena Pérez V, Fuentes de Arriba ÁL, Monleón LM, Simón L, Rubio OH, Sanz F, Morán JR. Eur. J. Org. Chem. 2014; 3242