CC BY 4.0 · Organic Materials 2020; 02(04): 288-299
DOI: 10.1055/s-0040-1715900
Original Article

Liquid Crystalline Benzoic Acid Ester MIDA Boronates: Synthesis and Mesomorphic Properties

Christopher Schilling
a  Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
,
Finn Schulz
a  Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
,
b  Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
,
a  Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
› Author Affiliations
Funding Information Generous financial support by the Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg, the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft, and the Carl-Schneider-Stiftung Aalen (shared instrumentation grant) is gratefully acknowledged.


Abstract

Two series of N-methyliminodiacetic acid (MIDA) boronates were prepared and their mesomorphic properties were investigated. MIDA-substituted benzoic acid esters were synthesized via the Mitsunobu reaction. The second series of MIDA benzyl ether derivatives was prepared via Williamson etherification and subsequent borylation. Both series exhibit smectic A (SmA) phases. In the case of MIDA boronate esters, a substitution with perfluorinated side chains led to increased transition temperatures and broadening of the SmA phases. The phase geometries of the mesophases were determined by X-ray diffraction. Quantum-chemical calculations provided further insight into the packing model.

Supporting Information

Supporting information for this article is available online at http://doi.org/10.1055/s-0040-1715900.


Supporting Information



Publication History

Received: 03 June 2020

Accepted: 09 July 2020

Publication Date:
28 October 2020 (online)

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Mula S, Frein S, Russo V, Ulrich G, Ziessel R, Barberá J, Deschenaux R. Chem. Mater. 2015; 27: 2332
  • 2 Florian A, Mayoral MJ, Stepanenko V, Fernández G. Chemistry 2012; 18: 14957
  • 3 Olivier J.-H, Barberá J, Bahaidarah E, Harriman A, Ziessel R. J. Am. Chem. Soc. 2012; 134: 6100
  • 4 Benstead M, Rosser GA, Beeby A, Mehl GH, Boyle RW. New J. Chem. 2011; 35: 1410
  • 5 Benstead M, Rosser GA, Beeby A, Mehl GH, Boyle RW. Photochem. Photobiol. Sci. 2011; 10: 992
  • 6 Olivier J.-H, Camerel F, Ulrich G, Barberá J, Ziessel R. Chemistry 2010; 16: 7134
  • 7 Frein S, Camerel F, Ziessel R, Barberá J, Deschenaux R. Chem. Mater. 2009; 21: 3950
  • 8 Camerel F, Ulrich G, Barberá J, Ziessel R. Chemistry 2007; 13: 2189
  • 9 Cavero E, Lydon DP, Uriel S, de la Fuente MR, Serrano JL, Giménez R. Angew. Chem. Int. Ed. 2007; 46: 5175
  • 10 Cavero E, de la Fuente MR, Beltrán E, Romero P, Serrano JL, Giménez R. Chem. Mater. 2007; 19: 6230
  • 11 Camerel F, Bonardi L, Schmutz M, Ziessel R. J. Am. Chem. Soc. 2006; 128: 4548
  • 12 Camerel F, Bonardi L, Ulrich G, Charbonnière L, Donnio B, Bourgogne C, Guillon D, Retailleau P, Ziessel R. Chem. Mater. 2006; 18: 5009
  • 13 Bando Y, Sakurai T, Seki S, Maeda H. Chem. Asian J. 2013; 8: 2088
  • 14 Terashima Y, Takayama M, Isozaki K, Maeda H. Chem. Commun. 2013; 49: 2506
  • 15 Mayoral MJ, Ovejero P, Campo JA, Heras JV, Oliveira E, Pedras B, Lodeiro C, Cano M. J. Mater. Chem. 2011; 21: 1255
  • 16 Turanova OA, Turanov AN, Lapaev DV, Gnezdilov OI, Lobkov SV, Galyametdinov YG. Russ. J. Gen. Chem. 2006; 76: 730
  • 17 Turanova OA, Kal'dyaeva EV, Gnezdilov OI, Nikitin SI, Turanov AN. Russ. J. Gen. Chem. 2010; 80: 258
  • 18 Sánchez I, Mayoral MJ, Ovejero P, Campo JA, Heras JV, Cano M, Lodeiro C. New J. Chem. 2010; 34: 2937
  • 19 Sánchez I, Núñez C, Campo JA, Torres MR, Cano M, Lodeiro C. J. Mater. Chem. C 2014; 2: 9653
  • 20 Tatum LA, Johnson CJ, Fernando AA. P, Ruch BC, Barakoti KK, Alpuche-Aviles MA, King BT. Chem. Sci. 2012; 3: 3261
  • 21 Wöhrle T, Baro A, Laschat S. Materials 2014; 7: 4045
  • 22 Belloni M, Manickam M, Wang Z.-H, Preece JA. Mol. Cryst. Liq. Cryst. 2003; 399: 93
  • 23 Ringstrand B, Kaszynski P. J. Mater. Chem. 2010; 20: 9613
  • 24 Ringstrand B, Kaszynski P. J. Mater. Chem. 2011; 21: 90
  • 25 Pecyna J, Kaszyński P, Ringstrand B, Bremer M. J. Mater. Chem. C 2014; 2: 2956
  • 26 Pecyna J, Ringstrand B, Domagała S, Kaszyński P, Woźniak K. Inorg. Chem. 2014; 53: 12617
  • 27 Ringstrand B, Monobe H, Kaszynski P. J. Mater. Chem. 2009; 19: 4805
  • 28 Jankowiak A, Sivaramamoorthy A, Pociecha D, Kaszyński P. RSC Adv. 2014; 4: 53907
  • 29 Tschierske C. Top. Curr. Chem. 2012; 318: 1
  • 30 Jang JY, Park YW. Liq. Cryst. 2013; 40: 511
  • 31 Ciastek S, Szymańska K, Kaszyński P, Jasiński M, Pociecha D. Liq. Cryst. 2018; 45: 11
  • 32 Liu Z, Zhang J, Li T, Yu Z, Zhang S. J. Fluorine Chem. 2013; 147: 36
  • 33 Kovářová A, Kozmík V, Svoboda J, Novotná V, Glogarová M, Pociecha D. Liq. Cryst. 2012; 39: 755
  • 34 Pibiri I, Beneduci A, Carraro M, Causin V, Casella G, Corrente GA, Chidichimo G, Pace A, Riccobono A, Saielli G. J. Mater. Chem. C 2019; 7: 7974
  • 35 Wöhrle T, Gündemir R, Frey W, Knecht F, Köhn A, Laschat S. Chemistry 2017; 23: 4149
  • 36 Goodby JW, Davis EJ, Mandle RJ, Cowling SJ. Handbook of Liquid Crystals, Vol. 1, 2nd ed. Wiley-VCH: Weinheim; 2014: 231-260
  • 37 Uno BE, Gillis EP, Burke MD. Tetrahedron 2009; 65: 3130
  • 38 Gillis EP, Burke MD. J. Am. Chem. Soc. 2007; 129: 6716
  • 39 Fujii S, Chang SY, Burke MD. Angew. Chem. Int. Ed. 2011; 50: 7862
  • 40 Gillis EP, Burke MD. J. Am. Chem. Soc. 2008; 130: 14084
  • 41 Jin C, Lee H, Lee S, Kim I, Jung Y. Synlett 2007; 2007: 2695
  • 42 Butschies M, Haenle JC, Tussetschläger S, Laschat S. Liq. Cryst. 2013; 40: 52
  • 43 Inanaga J, Hirata K, Saeki H, Katsuki T, Yamaguchi M. Bull. Chem. Soc. Jpn. 1979; 52: 1989
  • 44 Lukin K, Kishore V, Gordon T. Org. Process Res. Dev. 2013; 17: 666
  • 45 Boger DL, Johnson DS, Yun W. J. Am. Chem. Soc. 1994; 116: 1635
  • 46 Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. J. Cheminf. 2012; 4: 17
  • 47 Haenle JC, Stöckl Y, Forschner R, Haenle E, Laschat S. ChemPhysChem 2018; 19: 2758
  • 48 Ballmer SG, Gillis EP, Burke MD. Org. Synth. 2009; 86: 344
  • 49 Wolfsberger W, Schmidbaur H. Synth. React. Inorg. Met.-Org. Chem. 1974; 4: 149
  • 50 Kornath A, Neumann F, Oberhammer H. Inorg. Chem. 2003; 42: 2894
  • 51 Ramachandran PV, Nicponski D, Kim B. Org. Lett. 2013; 15: 1398
  • 52 Weigend F, Häser M. Theor. Chem. Acc. 1997; 97: 331
  • 53 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
  • 54 Weigend F, Häser M, Patzelt H, Ahlrichs R. Chem. Phys. Lett. 1998; 294: 143
  • 55 TURBOMOLE V7 1 2016, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; http://www.turbomole.com (accessed Aug 6, 2020)
  • 56 Furche F, Ahlrichs R, Hättig C, Klopper W, Sierka M, Weigend F. WIREs Comput. Mol. Sci. 2014; 4: 91
  • 57 Steffen C, Thomas K, Huniar U, Hellweg A, Rubner O, Schroer A. J. Comput. Chem. 2010; 31: 2967