CC BY-NC-ND 4.0 · Organic Materials 2020; 02(03): 204-213
DOI: 10.1055/s-0040-1713856
Original Article
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2020) The Author(s).

5,7,12,14-Tetraphenyl-Substituted 6,13-Diazapentacenes as Versatile Organic Semiconductors: Characterization in Field Effect Transistors

Miriam Hauschild
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
b  Centre for Advanced Materials, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
,
Michal Borkowski
c  Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
,
d  State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
,
c  Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
e  Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
,
f  Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
,
Gaozhan Xie
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Jan Freudenberg
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
b  Centre for Advanced Materials, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
› Author Affiliations
Funding Information This study was supported by the Deutsche Forschungsgemeinschaft (DFG; Project number 182849149—SFB 953 “Synthetic Carbon Allotropes” and Project number 281029004—SFB 1249 “N-Heteropolyzyklen als Funktionsmaterialien”).
Further Information

Publication History

Received: 22 April 2020

Accepted after revision: 16 May 2020

Publication Date:
19 July 2020 (online)


Abstract

We report the synthesis of 5,7,12,14-tetraphenyl-substituted 6,13-dihydro-6,13-diazapentacene and its fully aromatic 6,13-diazapentacene congener. Both arylated diazapentacenes were characterized by X-ray crystallography to investigate their solid-state structures and by UV–vis spectroscopy and cyclic voltammetry to unveil their electronic properties. The experimental results are complemented with theoretical investigations. The semiconductor properties of both diazapentacene derivatives were assessed in organic field-effect transistors, whereby the fully aromatized compound showed comparably less abundant n-type behavior.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1713856.


Supporting Information

 
  • References

    • 1a Kelley TW, Muyres DV, Baude PF, Smith TP, Jones TD. Mater. Res. Soc. Symp. Proc. 2003; 771: 169
    • 1b Anthony JE. Chem. Rev. 2006; 106: 5028
    • 1c Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
    • 2a Maliakal A, Raghavachari K, Katz H, Chandross E, Siegrist T. Chem. Mater. 2004; 16: 4980
    • 2b Stevens B, Perez RS, Ors JA. J. Am. Chem. Soc. 1974; 96: 6846
  • 3 Miao Q, Nguyen T.-Q, Someya T, Blanchet GB, Nuckolls C. J. Am. Chem. Soc. 2003; 125: 10284
  • 4 Tang Q, Zhang D, Wang S, Ke N, Xu J, Yu JC, Miao Q. Chem. Mater. 2009; 21: 1400
  • 5 Weng S.-Z, Shukla P, Kuo M.-Y, Chang Y.-C, Sheu H.-S, Chao I, Tao Y.-T. ACS Appl. Mater. Interfaces 2009; 1: 2071
  • 6 Miao Q. Synlett 2012; 23: 326
    • 7a Bunz UH. F, Engelhart JU, Lindner BD, Schaffroth M. Angew. Chem. Int. Ed. 2013; 52: 3810
    • 7b Bunz UH. F. Acc. Chem. Res. 2015; 48: 1676
    • 7c Li J, Zhang Q. ACS Appl. Mater. Interfaces 2015; 7: 28049
    • 7d Bunz UH. F, Engelhart JU. Chem. Eur. J. 2016; 22: 4680
    • 7e Bunz UH. F, Freudenberg J. Acc. Chem. Res. 2019; 52: 1575
    • 7f Li J, Chen S, Wang Z, Zhang Q. Chem. Rec. 2016; 16: 1518
    • 7g Zhang Z, Zhang Q. Mater. Chem. Front. 2020 (e-pub ahead of print). Doi: 10.1039/C9QM00656G
  • 8 Miao Q. Adv. Mater. 2014; 26: 5541
  • 9 Hinsberg O. Justus Liebigs Ann. Chem. 1901; 319: 257
  • 10 VanAllan JA, Adel RE, Reynolds GA. J. Org. Chem. 1962; 27: 2873
  • 11 Katritzky AR, Fan W.-Q, Li Q.-L, Bayyuk S. J. Heterocycl. Chem. 1989; 26: 885
  • 12 Liu D, Li Z, He Z, Xu J, Miao Q. J. Mater. Chem. 2012; 22: 4396
    • 13a Liang Z, Tang Q, Xu J, Miao Q. Adv. Mater. 2011; 23: 1535
    • 13b Chu M, Fan J.-X, Yang S, Liu D, Ng CF, Dong H, Ren A.-M, Miao Q. Adv. Mater. 2018; 30: 1803467
    • 13c Reiss H, Ji L, Han J, Koser S, Tverskoy O, Freudenberg J, Hinkel F, Moos M, Friedrich A, Krummenacher I, Lambert C, Braunschweig H, Dreuw A, Marder TB, Bunz UH. F. Angew. Chem. Int. Ed. 2018; 57: 9543
    • 14a Schwaben J, Münster N, Klues M, Breuer T, Hofmann P, Harms K, Witte G, Koert U. Chem. Eur. J. 2015; 21: 13758
    • 14b Engelhart JU, Lindner BD, Tverskoy O, Rominger F, Bunz UH. F. Chem. Eur. J. 2013; 19: 15089
    • 14c Müller M, Beglaryan SS, Koser S, Hahn S, Tverskoy O, Rominger F, Bunz UH. F. Chem. Eur. J. 2017; 23: 7066
  • 15 Xie G, Hauschild M, Hoffmann H, Ahrens L, Rominger F, Borkowski M, Marszalek T, Freudenberg J, Kivala M, Bunz UH. F. Chem. Eur. J. 2020; 26: 799
  • 16 Islam MM, Pola S, Tao Y.-T. Chem. Commun. 2011; 47: 6356
  • 17 Wang X.-Y, Zhuang F.-D, Wang R.-B, Wang X.-C, Cao X.-Y, Wang J.-Y, Pei J. J. Am. Chem. Soc. 2014; 136: 3764
  • 18 Miao Q, Chi X, Xiao S, Zeis R, Lefenfeld M, Siegrist T, Steigerwald ML, Nuckolls C. J. Am. Chem. Soc. 2006; 128: 1340
  • 19 Kaur I, Jia W, Kopreski RP, Selvarasah S, Dokmeci MR, Pramanik C, McGruer NE, Miller GP. J. Am. Chem. Soc. 2008; 130: 16274
  • 20 Chai J.-D, Head-Gordon M. Phys. Chem. Chem. Phys. 2008; 10: 6615
    • 21a Schäfer A, Huber C, Ahlrichs R. J. Chem. Phys. 1994; 100: 5829
    • 21b Schäfer A, Horn H, Ahlrichs R. J. Chem. Phys. 1992; 97: 2571
    • 21c Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
    • 21d Weigend F. Phys. Chem. Chem. Phys. 2006; 8: 1057
    • 22a Bauernschmitt R, Ahlrichs R. Chem. Phys. Lett. 1996; 256: 454
    • 22b Van Caillie C, Amos RD. Chem. Phys. Lett. 1999; 308: 249
    • 22c Van Caillie C, Amos RD. Chem. Phys. Lett. 2000; 317: 159
    • 22d Casida ME, Jamorski C, Casida KC, Salahub DR. J. Chem. Phys. 1998; 108: 4439
    • 22e Furche F, Ahlrichs R. J. Chem. Phys. 2002; 117: 7433
    • 22f Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V. J. Chem. Phys. 2006; 124: 094107
    • 22g Stratmann RE, Scuseria GE, Frisch MJ. J. Chem. Phys. 1998; 109: 8218
  • 23 Tang ML, Reichardt AD, Wei P, Bao Z. J. Am. Chem. Soc. 2009; 131: 5264
  • 24 Pesavento P, Chesterfield R, Newman C, Frisbie C. J. Appl. Phys. 2004; 96: 12
    • 25a Verlaak S, Arkhipov V, Heremans P. Appl. Phys. Lett. 2003; 82: 5
    • 25b Paulus F. J. Mater. Chem. C 2016; 4: 1194
  • 26 Wu JI, Wannere CS, Mo Y, Schleyer Pv, Bunz UH. J. Org. Chem. 2009; 74: 4343
  • 27 Sworakowski J. Chem. Phys. 2015; 456: 106
  • 28 Sworakowski J, Bielecka U, Lustyk P, Janus K. Thin Solid Films 2014; 571: 56
  • 29 Sworakowski J, Nespurek S. Macromol. Symp. 2004; 212: 113
  • 30 Sworakowski J, Nespurek S. Molecular Low Dimensional and Nanostructured Materials for Advanced Applications. Kluwer Academic Publisher; Dordrecht: 2002: 25-35
  • 31 Sheldrick GM. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015; A71: 3
  • 32 Sheldrick GM. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015; C71: 3
  • 33 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Revision D.01 ed. Gaussian, Inc.; Wallingford, CT, USA: 2009
    • 34a Cossi M, Rega N, Scalmani G, Barone V. J. Comput. Chem. 2003; 24: 669
    • 34b Barone V, Cossi M. J. Phys. Chem. A 1998; 102: 1995
  • 35 Zhurko GA. Chemcraft - graphical program for visualization of quantum chemistry computations. Ivanovo, Russia: 2005. https://chemcraftprog.com